【題目】如圖,∠AOB=25°,點M、N分別是邊OA、OB上的定點,點P、Q分別是邊OB、OA上的動點,記∠MPQ=α,∠PQN=β,當(dāng)MP+PQ+QN最小時,則β﹣α的值為( 。
A.50°B.40°C.30°D.25°
【答案】B
【解析】
如圖,作M關(guān)于OB的對稱點M′,N關(guān)于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根據(jù)三角形的外角的性質(zhì)和平角的定義即可得到結(jié)論.
解:如圖,作M關(guān)于OB的對稱點M′,N關(guān)于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小,
∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,
∴∠QPN=(180°-α)=∠AOB+∠MQP=20°+(180°-β),
∴180°-α=40°+(180°-β),
∴β-α=40°,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,直線l∥AB,P是直線l上一動點.對于下列各值:①線段AB的長②△PAB的周長③△PAB的面積④∠APB的度數(shù)其中不會隨點P的移動而變化的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD的紙片,長AD=10厘米,寬AB=8厘米,AD沿點A對折,點D正好落在BC上的點F處,AE是折痕.
(1)圖中有全等的三角形嗎?如果有,請直接寫出來;
(2)求線段EF的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD的頂點為A(1,2),B(﹣1,2),C(﹣1,﹣2),D(1,﹣2).點M和點N同時從E點出發(fā),沿四邊形的邊做環(huán)繞勻速運動,M點以1單位/s的速度做逆時針運動,N點以2單位/s的速度做順時針運動,則點M和點N第2016次相遇時的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為(﹣2,2)、(1,8).
(1)求三角形ABO的面積;
(2)若y軸上有一點M,且三角形MAB的面積為10,求M點的坐標(biāo);
(3)如圖,把直線AB以每秒2個單位的速度向右平移,問經(jīng)過多少秒后,該直線與y軸交于點(0,﹣2)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)c為常數(shù)的圖象經(jīng)過點,點,頂點為點M,過點A作軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.
求該二次函數(shù)的解析式及點M的坐標(biāo).
過該二次函數(shù)圖象上一點P作y軸的平行線,交一邊于點Q,是否存在點P,使得以點P、Q、C、O為頂點的四邊形為平行四邊形,若存在,求出P點坐標(biāo);若不存在,說明理由.
點N是射線CA上的動點,若點M、C、N所構(gòu)成的三角形與相似,請直接寫出所有點N的坐標(biāo)直接寫出結(jié)果,不必寫解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個點在第一象限及x軸、y軸上移動,在第一秒鐘,它從原點移動到點(1,0),然后按照圖中箭頭所示方向移動,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移動一個單位,那么第2018秒時,點所在位置的坐標(biāo)是( ).
A. (6,44)B. (38,44)C. (44,38)D. (44,6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計算:
1×2×3×4+1=________;
2×3×4×5+1=_______;
3×4×5×6+1=_______;
4×5×6×7+1=________;
(2)觀察上述計算的結(jié)果,指出他們的共同特性;
(3)以上特性,對于任意給出的四個連續(xù)自然數(shù)的積與1的和仍具備嗎?試證明你的猜想.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com