【題目】如圖,拋物線與軸交于兩點,與軸交于點,且.
(1)求拋物線的解析式;
(2)求拋物線與軸另一個交點的坐標(biāo),并觀察圖象直接寫出當(dāng)為何值時?
【答案】(1)拋物線解析式為y=x2﹣x﹣2;(2)B點坐標(biāo)為(4,0),x<﹣1或x>4.
【解析】試題分析:把A(﹣1,0)代入y=x2+bx﹣2得b=-,即可得解;
(2)令y=0,得方程x2﹣3x﹣4=0,求得x 的值,即可得B點坐標(biāo),觀察圖象得出當(dāng)為何值時.
試題解析:(1)把A(﹣1,0)代入y=x2+bx﹣2得﹣b﹣2=0,解得b=﹣,
所以拋物線解析式為y=x2﹣x﹣2,
(2)當(dāng)y=0時, x2﹣x﹣2=0,
整理得x2﹣3x﹣4=0,解得x1=﹣1,x2=4,
所以B點坐標(biāo)為(4,0),
觀察圖象,得:當(dāng)x<﹣1或x>4時,y>0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角邊長為的等腰直角三角形與邊長為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過等邊三角形時,設(shè)穿過時間為t,兩圖形重合部分的面積為S,則S關(guān)于t的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A,B兩點,與y軸交于點C,其中點B的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,8),且拋物線的對稱軸是直線x=﹣2.
(1)求此拋物線的表達式;
(2)連接AC,BC,若點E是線段AB上的一個動點(與點A,B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)在(2)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并判斷S取得最大值時△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=﹣x2+bx+c交x軸于點A(﹣1,0)和點B,交y軸于點C(0,2)
(1)求拋物線的表達式;
(2)點P為第一象限拋物線上一點,是否存在使△PBC面積最大的點P?若不存在,請說明理由;若存在,求出點P的坐標(biāo);
(3)點D坐標(biāo)為(1,﹣1),連接AD,將線段AD繞平面內(nèi)某一點旋轉(zhuǎn)180度得線段MN(點M、N分別與點A、D對應(yīng)),使點M、N都在拋物線上,求點M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分線相交于點D,∠ADC=125°,求∠ACB和∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠CAB=∠DAB下列條件中不能使△ABC≌△ABD的是( )
A. ∠C=∠D B. ∠ABC=∠ABD C. AC=AD D. BC=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李剛和父母一起從家到姑媽家去,兩地相距,出發(fā)前汽車油箱里有油,途中加油若干升,加油前后汽車都以的速度勻速行駛.已知油箱中剩余油量與行駛時間之間的關(guān)系如圖所示.則下列說法:①汽車行駛了后加油;②途中加油;③加油前油箱中剩余油量與行駛時間之間的函數(shù)關(guān)系式是;④汽車加油后還可行駛;⑤汽車到達姑媽家,油箱中還剩余油.其中全部正確的是( )
A.①④⑤B.①③④C.②⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次社會調(diào)查活動中,小華收集到某“健步走運動”團隊中20名成員一天行走的步數(shù),記錄如下:
5640 6430 6520 6798 7325
8430 8215 7453 7446 6754
7638 6834 7326 6830 8648
8753 9450 9865 7290 7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 3 |
E | 9500≤x<10500 | n |
請根據(jù)以上信息解答下列問題:
(1)填空:m= ______ ,n= ______ ;
(2)補全頻數(shù)發(fā)布直方圖;
(3)這20名“健步走運動”團隊成員一天行走步數(shù)的中位數(shù)落在______ 組;
(4)若該團隊共有120人,請估計其中一天行走步數(shù)不少于7500步的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com