【題目】在平行四邊形ABCD中,分別作∠BAD與∠ABC的平分線分別交BC于點E,交AD于點F 連接EF

1)補全圖形;

2)判斷四邊形ABEF的形狀,并證明你的結(jié)論.

【答案】1)補全圖形見解析;(2)四邊形ABEF為菱形.證明見解析

【解析】

1)在AD上截取AF=AB,在BC上截取BE=BA,然后連接EF即可;

2)先判斷四邊形ABEF為平行四邊形,再利用鄰邊相等可判斷四邊形ABEF為菱形.

1)在AD上截取AF=AB,在BC上截取BE=BA,然后連接AEBF,EF,如圖:

2)四邊形ABEF為菱形.

理由如下:

AB=AF=BE

AFBE,

∴四邊形ABEF為平行四邊形,

BA=BE,

∴四邊形ABEF為菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BAD是由BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且ABBC,BE=CE,連接DE.

(1)求證:BDE≌△BCE;

(2)試判斷四邊形ABED的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點離地面的距離OC為5米.以最高點O為坐標原點,拋物線的對稱軸為y軸,1米為數(shù)軸的單位長度,建立平面直角坐標系,求:(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫出x的取值范圍;(2)有一輛寬2.8米,高1米的農(nóng)用貨車(貨物最高處與地面AB的距離)能否通過此隧道?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤,準備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,RtABC的三個頂點A(-2,2),B(0,5),C(0,2).

(1)ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到A1B1C,請畫出A1B1C的圖形.

(2)平移ABC,使點A的對應點A2坐標為(-2,-6),請畫出平移后對應的A2B2C2的圖形.

(3)若將A1B1C繞某一點旋轉(zhuǎn)可得到A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別是A(1,1),B(4,2),C(3,4).

(1)請畫出ABC向左平移5個單位長度后得到的A1B1C1;

AB、C向左平移5個單位后的坐標分別為(-4,1),(-1,2)(-2,4),連接這三個點,得A1B1C1;

(2)請畫出ABC關于原點對稱的A2B2C2;

(3)x軸上求作一點P,使PAB周長最小,請畫出PAB,并直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點A,B,且過點C(5,4).

(1)求a的值和該拋物線頂點P的坐標;

(2)請你設計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把二次函數(shù)y=a(x-h)2+k的圖象先向左平移2個單位,再向上平移4個單位,得到二次函數(shù)y= (x+1)2-1的圖象.

1試確定a,h,k的值;

2指出二次函數(shù)y=a(x-h)2+k的開口方向,對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線ABCD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE41,則∠AOF等于( 。

A. 130°B. 120°C. 110°D. 100°

查看答案和解析>>

同步練習冊答案