【題目】如圖,已知數軸上點表示的數為,點表示的數為,以為邊在數軸的上方作正方形ABCD.動點從點出發(fā),以每秒個單位長度的速度沿數軸正方向勻速運動,同時動點從點出發(fā),以每秒個單位長度的速度向點勻速運動,到達點后再以同樣的速度沿數軸正方向勻速運動,設運動時間為秒.
(1)若點在線段.上運動,當t為何值時,?
(2)若點在線段上運動,連接,當t為何值時,三角形的面積等于正方形面積的?
(3)在點和點運動的過程中,當為何值時,點與點恰好重合?
(4)當點在數軸上運動時,是否存在某-時刻t,使得線段的長為,若存在,求出的值;若不存在,請說明理由.
【答案】(1);(2);(3)4;(4)存在,t=3或5,理由見詳解.
【解析】
(1)由數軸上點表示的數為,點表示的數為,以為邊在數軸的上方作正方形ABCD,,列出方程,即可求解;
(2)根據三角形的面積等于正方形面積的,列出方程,即可;
(3)根據等量關系,列出方程即可求解;
(4)分兩種情況:①當點Q在點P的左側時, ②當點Q在點P的右側時,分別列出方程,即可求解.
(1)∵數軸上點表示的數為,點表示的數為,以為邊在數軸的上方作正方形ABCD,
∴AD=AB=4,
∴AQ=4-2t,AP=t,
∵,
∴4-2t =t,解得:t=,
∴當t=秒時,;
(2)∵AQ=4-2t,AB=4,
∴,正方形面積=4×4=16,
∴8-4t=,解得:t=,
∴當t=秒時,三角形的面積等于正方形面積的;
(3)根據題意得:2t-4=t,解得:t=4,
∴當t=4秒時,點與點恰好重合;
(4)①當點Q在點P的左側時,t-(2t-4)=1,解得:t=3,
②當點Q在點P的右側時,(2t-4)-t=1,解得:t=5,
∴當t=3秒或5秒時,線段的長為.
科目:初中數學 來源: 題型:
【題目】如圖1,四邊形中,,,,,點從點出發(fā),以每秒2個單位長度的速度向點運動,同時,點從點出發(fā),以每秒1個單位長度的速度向點運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點作于點,連接交于點,連接,設運動時間為秒.
(1)連接、,當為何值時,四邊形為平行四邊形;
(2)求出點到的距離;
(3)如圖2,將沿翻折,得,是否存在某時刻,使四邊形為菱形,若存在,求的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K,使K和B在AC的兩側;
所以,BH就是所求作的高. 其中順序正確的作圖步驟是( )
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y =ax+b的圖像與反比例函數y =的圖像交于A(4,﹣2)、B(﹣2,m)兩點,與x軸交于點C.
(1)求a,m的值;
(2)請直接寫出不等式ax+b≥的解集;
(3)點P在反比例函數圖像上,且點P的橫坐標為-4,在平面直角坐標系中是否存在一點Q,使得以A、B、P、Q為頂點的四邊形為平行四邊形?如果存在,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點A落在A′的位置,若OB=,tan∠BOC=,則點A′的坐標( 。
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的三個頂點分別為A(1,2),B(2,5),C(6,1).若函數y=在第一象限內的圖象與△ABC有交點,則k的取值范圍是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某摩托車廠本周計劃每日生產450輛摩托車,由于工人實行輪休, 每日上班人數不一定相等,實際每日生產量與計劃量相比情況如下表: [增加的輛數為正數,減少的輛數為負數]
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 | -5 | +7 | -3 | +4 | +10 | -9 | -25 |
(1)本周星期六生產多少輛摩托車?
(2)本周總產量與計劃產量相比,是增加了還是減少了?為什么?
(3)產量最多的那天比產量最少的那天多生產多少輛?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數;
(2)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若將代數式中的任意兩個字母交換,代數式不變,則稱這個代數式為完全對稱式,如就是完全對稱式(代數式中換成b,b換成,代數式保持不變).下列三個代數式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com