【題目】如圖,在菱形ABCD中,∠BAD=60°,M為對(duì)角線BD延長(zhǎng)線上一點(diǎn),連接AM和CM,E為CM上一點(diǎn),且滿足CB=CE,連接BE,交CD于點(diǎn)F.
(1)若∠AMB=30°,且DM=3,求BE的長(zhǎng);
(2)證明:AM=CF+DM.
【答案】
(1)解:如圖1中,
∵四邊形ABCD是菱形,∠BAD=60°,
∴△ABD,△BCD的是等邊三角形,
∴∠ABD=∠CBD=∠ADB=∠BAD=60°,BA=BC,
∵∠AMB=30°,∠ADB=∠AMB+∠DAM,
∴∠DAM=∠DMA=30°,
∴∠BAM=90°,DA=DM=AB=BC=CE=3,
在△BMA和△BMC中,
,
∴△BMA≌△BMC,
∴∠BCM=∠BAM=90°,
在Rt△BCE中,BE= =3 .
(2)解:如圖2中,在BD上取一點(diǎn)G,使得BG=DF,連接CG交BE于O.
∵BG=DF,∠CBG=∠BDF,BD=BC,
∴△GBC≌△FDB,
∴∠BGC=∠BFD,∠DBF=∠BCG,
∴∠MGC=∠BFC,
∵∠COF=∠CBO+∠OCB=∠CBO+∠DBF=60°
在△COE中,∠ECO+∠EOC+∠CEO=180°,
在△BCF中,∠BFC+∠CBF+∠BCF=180°,
∵CB=CE,
∴∠CBE=∠CEO,∵∠BCF=∠COE=60°,
∴∠ECO=∠BFC=∠MGC,
∴MC=MG,
由(1)可知△BMA≌△BMC,
∴AM=MC=MG,
∵M(jìn)G=DG+DM,
∵BD=CD,BG=DF,
∴DG=CF,
∴AM=CF+DM
【解析】(1)根據(jù)菱形的性質(zhì)和全等三角形的性質(zhì)可得出△BCE是等腰直角三角形,即可求出BE的長(zhǎng);(2)證兩線段之和等于一條線段可采取“截長(zhǎng)補(bǔ)短法“,即在長(zhǎng)線段BM上截取BG=DF,構(gòu)造全等三角形△GBC≌△FDB,可推出CF=DG,再結(jié)合已知AM=CM=MG,得出結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm,動(dòng)點(diǎn)E從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),E點(diǎn)運(yùn)動(dòng)到B點(diǎn)停止,F(xiàn)點(diǎn)繼續(xù)運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)F點(diǎn)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是如圖中的( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正五邊形ABCDE中,連接AC、AD、CE,CE交AD于點(diǎn)F,連接BF,則線段AC、BF、CD之間的關(guān)系式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,OE是∠COB的平分線,FO⊥OE,已知∠AOD=70°.
(1)求∠BOE的度數(shù); (2)OF平分∠AOC嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,點(diǎn)D的坐標(biāo)為(﹣1,0),點(diǎn)A的橫坐標(biāo)是1,tan∠CDO=2.過(guò)點(diǎn)B作BH⊥y軸交y軸于H,連接AH.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABH面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為∠AOB內(nèi)一定點(diǎn),M,N分別是射線OA,OB上一點(diǎn),當(dāng)△PMN周長(zhǎng)最小時(shí),∠OPM=50°,則∠AOB=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為傳播奧運(yùn)知識(shí),小剛就本班學(xué)生對(duì)奧運(yùn)知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì):A:熟悉,B:了解較多,C:一般了解.圖1和圖2是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:
(1)求該班共有多少名學(xué)生;
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算出“了解較多”部分所對(duì)應(yīng)的圓心角的度數(shù);
(4)如果全年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)奧運(yùn)知識(shí)“了解較多”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的圖象,根據(jù)圖形判斷①c>0;②a+b+c<0;③2a﹣b<0;④b2+8a>4ac中正確的是(填寫(xiě)序號(hào)) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對(duì)今年這種蔬菜的銷售價(jià)格進(jìn)行了預(yù)測(cè),預(yù)測(cè)情況如圖,圖中的拋物線(部分)表示這種蔬菜銷售價(jià)與月份之間的關(guān)系.觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?答題要求:(1)請(qǐng)?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式.(注:此題答案不唯一,以上答案僅供參考.若有其它答案,只要是根據(jù)圖象得出的信息,并且敘述正確都可以)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com