【題目】如圖,內(nèi)接于,是直徑,的切線(xiàn)交的延長(zhǎng)線(xiàn)于點(diǎn),交于點(diǎn),交于點(diǎn),連接.
判斷與的位置關(guān)系并說(shuō)明理由;
若的半徑為,,求的長(zhǎng).
【答案】 .
【解析】
(1)AF為為圓O的切線(xiàn),理由為:連接OC,由PC為圓O的切線(xiàn),利用切線(xiàn)的性質(zhì)得到CP垂直于OC,由OF與BC平行,利用兩直線(xiàn)平行內(nèi)錯(cuò)角相等,同位角相等,分別得到兩對(duì)角相等,根據(jù)OB=OC,利用等邊對(duì)等角得到一對(duì)角相等,等量代換得到一對(duì)角相等,再由OC=OA,OF為公共邊,利用SAS得出三角形AOF與三角形COF全等,由全等三角形的對(duì)應(yīng)角相等及垂直定義得到AF垂直于OA,即可得證;
(2)由AF垂直于OA,在直角三角形AOF中,由OA與AF的長(zhǎng),利用勾股定理求出OF的長(zhǎng),而OA=OC,OF為角平分線(xiàn),利用三線(xiàn)合一得到E為AC中點(diǎn),OE垂直于AC,利用面積法求出AE的長(zhǎng),即可確定出AC的長(zhǎng).
為圓的切線(xiàn),
理由為:
連接,
∵為圓切線(xiàn),
∴,
∴,
∵,
∴,,
∵,
∴,
∴,
∵在和中,
,
∴,
∴,
∴,為圓的半徑,
則為圓的切線(xiàn);
設(shè),由知,,
∴,
且的半徑為,,
∴,
∴,則,
∴在中,
,
解得:(舍去)或,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC為等邊三角形,BD為△ABC的高,延長(zhǎng)BC至E,使CE=CD=1,連接DE,則BE=___________,∠BDE=_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,點(diǎn)M(不與A、B重合),從點(diǎn)A出發(fā)沿AB方向以cm/s的速度向終點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,過(guò)點(diǎn)M作MN⊥AB,交射線(xiàn)BC于點(diǎn)N,以線(xiàn)段MN為直角邊作等腰直角三角形MNQ,且∠MNQ=90°(點(diǎn)B、Q位于MN兩側(cè)).設(shè)△MNQ與△ABC重疊部分圖形面積為S(cm2),點(diǎn)M的運(yùn)動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示線(xiàn)段MN的長(zhǎng),MN= .
(2)當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),t= .
(3)求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn).,垂足為.
(1)求OF的長(zhǎng);
(2)作點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),連交于E,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以的邊為直徑畫(huà)圓,與邊交于,與邊交于,已知的面積是面積的倍,中有一個(gè)內(nèi)角度數(shù)是另一內(nèi)角度數(shù)的倍,試計(jì)算三個(gè)內(nèi)角的度數(shù):________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線(xiàn)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo),與軸的一個(gè)交點(diǎn),直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),下列結(jié)論:
①;②;③方程有兩個(gè)相等的實(shí)數(shù)根;
④拋物線(xiàn)與軸的另一個(gè)交點(diǎn)是;⑤當(dāng)時(shí),有,
其中正確的序號(hào)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)有、兩種商品,商品每件售價(jià)元,商品每件售價(jià)元,商品每件的成本是元.
根據(jù)市場(chǎng)調(diào)查“若按上述售價(jià)銷(xiāo)售,該商場(chǎng)每天可以銷(xiāo)售商品件,若銷(xiāo)售單價(jià)毎上漲元,商品每天的銷(xiāo)售量就減少件.
請(qǐng)寫(xiě)出商品每天的銷(xiāo)售利潤(rùn)(元)與銷(xiāo)售單價(jià)元之間的函數(shù)關(guān)系?
當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),商品每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)八年級(jí)(5)班的學(xué)生到野外進(jìn)行數(shù)學(xué)活動(dòng),為了測(cè)量一池塘兩端A、B之間的距離,同學(xué)們?cè)O(shè)計(jì)了如下兩種方案:
方案1:如圖(1),先在平地上取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,連接AC并延長(zhǎng)AC至點(diǎn)D,連接BC并延長(zhǎng)至點(diǎn)E,使DC=AC,EC=BC,最后量出DE的距離就是AB的長(zhǎng).
方案2:如圖(2),過(guò)點(diǎn)B作AB的垂線(xiàn)BF,在BF上取C、D兩點(diǎn),使BC=CD,接著過(guò)D作BD的垂線(xiàn)DE,交AC的延長(zhǎng)線(xiàn)于E,則測(cè)出DE的長(zhǎng)即為AB間的距離
問(wèn):(1)方案1是否可行?并說(shuō)明理由;
(2)方案2是否可行?并說(shuō)明理由;
(3)小明說(shuō):“在方案2中,并不一定需要BF⊥AB,DE⊥BF,將“BF⊥AB,DE⊥BF”換成條 也可以.”你認(rèn)為小明的說(shuō)法正確嗎?如果正確的話(huà),請(qǐng)你把小明所說(shuō)的條件補(bǔ)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉辦了一次趣味數(shù)學(xué)競(jìng)賽,滿(mǎn)分100分,學(xué)生得分均為整數(shù),達(dá)到成績(jī)60分及以上為合格,達(dá)到90分及以上為優(yōu)秀,這次競(jìng)賽中,甲乙兩組學(xué)生成績(jī)?nèi)缦,甲組:30,60,60,60,60,60,70,90,90,100 ;乙組:50,60,60,60,70,70,70,70,80,90.
(1)以上成績(jī)統(tǒng)計(jì)分析表中a=______分,b=______分,c=_______分;
組別 | 平均數(shù) | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 68分 | a | 376 | 30% | |
乙組 | b | c | 90% |
(2)小亮同學(xué)說(shuō):這次競(jìng)賽我得了70分,在我們小組中屬于中游略偏上,觀察上面表格判斷,小亮可能是甲乙哪個(gè)組的學(xué)生?并說(shuō)明理由
(3)計(jì)算乙組的方差和優(yōu)秀率,如果你是該校數(shù)學(xué)競(jìng)賽的教練員,現(xiàn)在需要你選一組同學(xué)代表學(xué)校參加復(fù)賽,你會(huì)選擇哪一組?并說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com