【題目】如圖,以的邊為直徑畫(huà)圓,與邊交于,與邊交于,已知的面積是面積的,中有一個(gè)內(nèi)角度數(shù)是另一內(nèi)角度數(shù)的倍,試計(jì)算三個(gè)內(nèi)角的度數(shù):________

【答案】,,,

【解析】

連接BM,由圓內(nèi)接四邊形的性質(zhì)可知,CNM=∠CAB,CMN=CBA,可證CNM∽△CAB,又ABC的面積是CMN面積的4倍,可知相似比,而AB為直徑,BMC=90°,則C=60°,∠A+∠B=120°,由A=2∠BB=2∠A,分類求解.

如圖:連接BM,

由圓內(nèi)接四邊形的性質(zhì)可知,∠CNM=CAB,CMN=CBA,

∴△CNM∽△CAB,

∵△ABC的面積是CMN面積的4倍,

,

AB為直徑,∠BMC=90°,

∴∠CBM=30,

C=60°,

∴∠A+B=120°,

A=2B或∠B=2A,

∴∠A=80°,∠B=40°,∠C=60°A=40°,∠B=80°,∠C=60°.

故答案為:A=80°,∠B=40°,∠C=60°A=40°,∠B=80°,∠C=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初三學(xué)生小麗、小杰為了解本校初二學(xué)生每周上網(wǎng)的時(shí)間,各自在本校進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛(ài)好者中名學(xué)生每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為小時(shí);小杰從全體名初二學(xué)生名單中隨機(jī)抽取了名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為小時(shí).小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.

時(shí)間段(小時(shí)/周)

小麗抽樣人數(shù)

小杰抽樣人數(shù)

(每組可含最低值,不含最高值)

請(qǐng)根據(jù)上述信息,回答下列問(wèn)題:

你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?答:________;估計(jì)該校全體初二學(xué)生平均每周上網(wǎng)時(shí)間為________小時(shí);

根據(jù)具有代表性的樣本,把上圖中的頻數(shù)分布直方圖補(bǔ)畫(huà)完整;

在具有代表性的樣本中,中位數(shù)所在的時(shí)間段是________小時(shí)/周;

專家建議每周上網(wǎng)小時(shí)以上(含小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,根據(jù)具有代表性的樣本估計(jì),該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD的長(zhǎng)AB為5,寬BC為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AEEF,EF交CD于點(diǎn)F.設(shè)BE=x,F(xiàn)C=y,則點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),能表示y關(guān)于x的函數(shù)關(guān)系的大致圖象是(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,延長(zhǎng)BC到點(diǎn)E,使CE=1,連接DE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△ABP和△DCE全等時(shí),t的值____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在RtABC中,∠C=90°,A=30°,在直線AC上找點(diǎn)P,使ABP是等腰三角形,則∠APB的度數(shù)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,內(nèi)接于,是直徑,的切線的延長(zhǎng)線于點(diǎn),于點(diǎn),交于點(diǎn),連接

判斷的位置關(guān)系并說(shuō)明理由;

的半徑為,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)生成)我們已經(jīng)知道,對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2請(qǐng)解答下列問(wèn)題:

(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式________________;

(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;

(3)小明同學(xué)用圖3x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張寬、長(zhǎng)分別為a,b的長(zhǎng)方形紙片拼出一個(gè)面積為(2a+b)(a+2b)長(zhǎng)方形,則x+y+z=_______;

(知識(shí)遷移)(4)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個(gè)邊長(zhǎng)為x的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫(xiě)出一個(gè)數(shù)學(xué)等式:_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把長(zhǎng)方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么,有下列說(shuō)法:①△EBA和△EDC一定是全等三角形;②△EBD是等腰三角形,EBED;③折疊后得到的圖形是軸對(duì)稱圖形;④折疊后∠ABE和∠CBD一定相等;其中正確的有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A. 中位數(shù)就是一組數(shù)據(jù)中最中間的一個(gè)數(shù)

B. 這組數(shù)據(jù)的眾數(shù)是9

C. 如果的平均數(shù)是1,那么

D. 一組數(shù)據(jù)的方差是這組數(shù)據(jù)的極差的平方

查看答案和解析>>

同步練習(xí)冊(cè)答案