如圖,直線y=﹣3x﹣3與x軸、y軸分別相交于點(diǎn)A、C,經(jīng)過點(diǎn)C且對(duì)稱軸為x=1的拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn).
(1)試求點(diǎn)A、C的坐標(biāo);
(2)求拋物線的解析式;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度由點(diǎn)B向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N在線段OC上以相同的速度由點(diǎn)O向點(diǎn)C運(yùn)動(dòng)(當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng)),又PN∥x軸,交AC于P,問在運(yùn)動(dòng)過程中,線段PM的長(zhǎng)度是否存在最小值?若有,試求出最小值;若無,請(qǐng)說明理由.
(1)A(﹣1,0);C(0,﹣3);
(2)拋物線的解析式為y=x2﹣2x﹣3;
(3)在運(yùn)動(dòng)過程中,線段PM的長(zhǎng)度存在最小值.
【解析】
試題分析:(1)由直線解析式y(tǒng)=﹣3x﹣3,將y=0代入求出x的值,得到直線與x軸交點(diǎn)A的坐標(biāo),將x=0代入求出y的值,得到直線與y軸交點(diǎn)C的坐標(biāo);
(2)根據(jù)拋物線y=ax2+bx+c的對(duì)稱軸為x=1,且過點(diǎn)A(﹣1,0)、C(0,﹣3),可得到方程組,解方程組即可求出拋物線的解析式;
(3)由對(duì)稱性得點(diǎn)B(3,0),設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),則M(3﹣t,0),N(0,﹣t),P(xP,﹣t),則可得xP.再過點(diǎn)P作PD⊥x軸于點(diǎn)D,則D(﹣1,0),在△PDM中利用勾股定理得出PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),利用二次函數(shù)的性質(zhì)可知當(dāng)t=時(shí),PM2最小值為,即在運(yùn)動(dòng)過程中,線段PM的長(zhǎng)度存在最小值.
試題解析:(1)∵y=﹣3x﹣3,
∴當(dāng)y=0時(shí),﹣3x﹣3=0,解得x=﹣1,
∴A(﹣1,0);
∵當(dāng)x=0時(shí),y=﹣3,
∴C(0,﹣3);
(2)∵拋物線y=ax2+bx+c的對(duì)稱軸為x=1,過點(diǎn)A(﹣1,0)、C(0,﹣3),
∴,解得,
∴拋物線的解析式為y=x2﹣2x﹣3;
(3)由對(duì)稱性得點(diǎn)B(3,0),設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),則M(3﹣t,0),N(0,﹣t),P(xP,﹣t).
即-t=-3xp-3
xp=,
過點(diǎn)P作PD⊥x軸于點(diǎn)D,則D(,0),
∴MD=(3﹣t)﹣()=﹣+4,
∴PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),
又∵﹣<3,
∴當(dāng)t=時(shí),PM2最小值為,
故在運(yùn)動(dòng)過程中,線段PM的長(zhǎng)度存在最小值.
考點(diǎn):1、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2、待定系數(shù)法;3、勾股定理;4、二次函數(shù)的性質(zhì)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(山東濱州卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動(dòng)點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個(gè)單位的速度向B點(diǎn)移動(dòng),移動(dòng)時(shí)間為t秒.
①當(dāng)t為何值時(shí),DP⊥AC?
②設(shè),寫出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動(dòng)到第幾秒到第幾秒之間時(shí),y取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(山東濟(jì)寧卷)數(shù)學(xué)(解析版) 題型:選擇題
從總體中抽取一部分?jǐn)?shù)據(jù)作為樣本去估計(jì)總體的某種屬性.下面敘述正確的是( )
A.樣本容量越大,樣本平均數(shù)就越大
B.樣本容量越大,樣本的方差就越大
C.樣本容量越大,樣本的極差就越大
D.樣本容量越大,對(duì)總體的估計(jì)就越準(zhǔn)確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(解析版) 題型:填空題
某廠今年一月份新產(chǎn)品的研發(fā)資金為a元,以后每月新產(chǎn)品的研發(fā)資金與上月相比增長(zhǎng)率都是x,則該廠今年三月份新產(chǎn)品的研發(fā)資金y(元)關(guān)于x的函數(shù)關(guān)系式為y= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(解析版) 題型:選擇題
某棉紡廠為了解一批棉花的質(zhì)量,從中隨機(jī)抽取了20根棉花纖維進(jìn)行測(cè)量,其長(zhǎng)度x(單位:mm)的數(shù)據(jù)分布如右表,則棉花纖維長(zhǎng)度的數(shù)據(jù)在8≤x<32這個(gè)范圍的頻率為( )
棉花纖維長(zhǎng)度x | 頻數(shù) |
0≤x<8 | 1 |
8≤x<16 | 2 |
16≤x<24 | 8 |
24≤x<32 | 6 |
32≤x<40 | 3 |
A.0.8 B.0.7 C.0.4 D.0.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川雅安卷)數(shù)學(xué)(解析版) 題型:解答題
某老師對(duì)本班所有學(xué)生的數(shù)學(xué)考試成績(jī)(成績(jī)?yōu)檎麛?shù),滿分為100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)、頻率分布表和頻數(shù)分布直方圖,請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 |
頻數(shù) | 2 | a | 20 | 16 | 8 |
頻率 | 0.04 | 0.08 | 0.40 | 0.32 | b |
(1)求a,b的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)老師準(zhǔn)備從成績(jī)不低于80分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗(yàn),那么被選中的學(xué)生其成績(jī)不低于90分的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川雅安卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,ABCD為正方形,O為AC、BD的交點(diǎn),△DCE為Rt△,∠CED=90°,∠DCE=30°,若OE=,則正方形的面積為( )
A.5 B.4 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川達(dá)州卷)數(shù)學(xué)(解析版) 題型:解答題
某服裝商預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用8000元購進(jìn)一批襯衫,面市后果然供不應(yīng)求,服裝商又用17600元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但單價(jià)貴了8元.商家銷售這種襯衫時(shí)每件定價(jià)都是100元,最后剩下10件按8折銷售,很快售完.在這兩筆生意中,商家共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(四川資陽卷)數(shù)學(xué)(解析版) 題型:選擇題
下列運(yùn)算正確的是( 。
A.a(chǎn)3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com