【題目】如圖,在△ABC中,AB=AC, 點M在△ABC內(nèi),點P在線段MC上,∠ABP=2∠ACM.
(1)若∠PBC=10°,∠BAC=80°,求∠MPB的值
(2)若點M在底邊BC的中線上,且BP=AC,試探究∠A與∠ABP之間的數(shù)量關(guān)系,并證明.
【答案】(1) ∠MPB=40°;(2) ∠BAC+∠ABP=120°.證明見解析
【解析】試題分析:(1)由AB=AC,∠BAC=80°,可求∠ABC=∠ACB=50°,又∠PBC=10°,∠ABP=2∠ACM,可求∠BCM=30°,由三角形外角的性質(zhì)可求出結(jié)果;
(2)過點A作底邊BC的中線AD,連接BM,由等腰三角形三線合一的性質(zhì)可得∠CAM=∠BAM,從而可證△ABM≌△ACM.進(jìn)而證明△ABM≌△PBM.可證出∠AMB=120°,進(jìn)而得出結(jié)論.
試題解析:(1)∵ AB=AC,
∴∠ABC=∠ACB.
∵∠BAC=80°,
∴∠ABC=∠ACB=50°.
∵∠PBC=10°,
∴∠ABP=40°.
∵∠ABP=2∠ACM,
∴∠ACM=20°.
∴∠BCM=30°.
∴∠MPB=∠PBC+∠BCM= 40°;
(2)∠BAC+∠ABP=120°.
證明:過點A作底邊BC的中線AD,
∵AB=AC,
∴AD是∠BAC的平分線.
∵點M在底邊BC的中線上,
∴點M在∠BAC的平分線AD上.
即AM平分∠BAC.
∴∠CAM=∠BAM.
∴連接BM,又AM是公共邊
△ABM≌△ACM.
∴∠ACM=∠ABM.
∠ABP=2∠ACM,
∴∠ABP=2∠ABM.
∴∠ABM=∠PBM.
∵BP=AC,
∴BP=AB.
∴△ABM≌△PBM.
∴∠AMB=∠PMB.
又∵△ABM≌△ACM,
∴∠AMB=∠AMC.
∴∠AMB=∠AMC=∠PMB.
∴∠AMB=120°.
∴∠BAM+∠ABM=60°.
∵∠BAC=2∠BAM,
∠ABP=2∠ABM,
∴∠BAC+∠ABP=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,B的坐標(biāo)分別為(-4,5),(-2,1).
(1)寫出點C及點C關(guān)于y軸對稱的點C′的坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點的坐標(biāo)
(3)如圖3,點C(0,3),Q、A兩點均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點,OP的長度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=( 。
A. 10B. 9C. 8D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)a3aa2﹣9a2a4
(2)﹣m2(﹣m2)4(﹣m)3
(3)(﹣8)2018×(﹣0.125)2017
(4)(﹣a2b﹣2ab2+)(﹣9a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為5,E在BC邊上運(yùn)動,DE的中點G,EG繞E順時針旋轉(zhuǎn)90°得EF,問CE為多少時A、C、F在一條直線上( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,且點E在線段AD上,若AF=4,∠F=60°.
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度和∠EBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(1)的位置時,顯然有:DE=AD+BE;請證明.
(2)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(2)的位置時,求證:DE=AD-BE;
(3)當(dāng)直線MN繞點C旋轉(zhuǎn)到圖(3)的位置時,試問(2)中DE、AD、BE的關(guān)系還成立嗎?若成立,請證明;若不成立,它們又具有怎樣的等量關(guān)系?請證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com