【題目】綜合與實(shí)踐﹣﹣旋轉(zhuǎn)中的數(shù)學(xué)
問(wèn)題背景:在一次綜合實(shí)踐活動(dòng)課上,同學(xué)們以兩個(gè)矩形為對(duì)象,研究相似矩形旋轉(zhuǎn)中的問(wèn)題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對(duì)角線的交點(diǎn)重合于點(diǎn)O,連接AA′,CC′.請(qǐng)你幫他們解決下列問(wèn)題:
觀察發(fā)現(xiàn):(1)如圖1,若A′B′∥AB,則AA′與CC′的數(shù)量關(guān)系是______;
操作探究:(2)將圖1中的矩形ABCD保持不動(dòng),矩形A′B′C′D′繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
操作計(jì)算:(3)如圖3,在(2)的條件下,當(dāng)矩形A′B′C′D′繞點(diǎn)O旋轉(zhuǎn)至AA′⊥A′D′時(shí),若AB=6,BC=8,A′B′=3,求AA′的長(zhǎng).
【答案】AA′=CC′
【解析】
(1)連接AC、A′C′,根據(jù)題意得到點(diǎn)A、A′、C′、C在同一條直線上,根據(jù)矩形的性質(zhì)得到OA=OC,OA′=OC′,得到答案;
(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據(jù)全等三角形的性質(zhì)證明;
(3)連接AC,過(guò)C作CE⊥AB′,交AB′的延長(zhǎng)線于E,根據(jù)相似多邊形的性質(zhì)求出B′C′,根據(jù)勾股定理計(jì)算即可.
(1)AA′=CC′,
理由如下:連接AC、A′C′,
∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,
∵A′B′∥AB,
∴點(diǎn)A、A′、C′、C在同一條直線上,
由矩形的性質(zhì)可知,OA=OC,OA′=OC′,
∴AA′=CC′,
故答案為:AA′=CC′;
(2)(1)中的結(jié)論還成立,AA′=CC′,
理由如下:連接AC、A′C′,則AC、A′C′都經(jīng)過(guò)點(diǎn)O,
由旋轉(zhuǎn)的性質(zhì)可知,∠A′OA=∠C′OC,
∵四邊形ABCD和四邊形A′B′C′D′都是矩形,
∴OA=OC,OA′=OC′,
在△A′OA和△C′OC中,
,
∴△A′OA≌△C′OC,
∴AA′=CC′;
(3)連接AC,過(guò)C作CE⊥AB′,交AB′的延長(zhǎng)線于E,
∵矩形ABCD∽矩形A′B′C′D′,
∴,即,
解得,B′C′=4,
∵∠EB′C=∠B′C′C=∠E=90°,
∴四邊形B′ECC′為矩形,
∴EC=B′C′=4,
在Rt△ABC中,AC==10,
在Rt△AEC中,AE==2,
∴AA′+B′E=2﹣3,又AA′=CC′=B′E,
∴AA′=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家用1200元購(gòu)進(jìn)了一批T恤,上市后很快售完,商家又用2800元購(gòu)進(jìn)了第二批這種T恤,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了5元.
(1)該商家購(gòu)進(jìn)的第一批T恤是多少件?
(2)若兩批T恤按相同的標(biāo)價(jià)銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤(rùn)率不低于16%(不考慮其它因素),那么每件T恤的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如:⊙O與⊙O上的一點(diǎn)A
(1)求作:⊙O的內(nèi)接正六邊形ABCDEF;( 要求:尺規(guī)作圖,不寫作法但保留作圖痕跡)
(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某旅游景點(diǎn)的一處臺(tái)階,其中臺(tái)階坡面AB和BC的長(zhǎng)均為6m,AB部分的坡角∠BAD為45°,BC部分的坡角∠CBE為30°,其中BD⊥AD,CE⊥BE,垂足為D,E.現(xiàn)在要將此臺(tái)階改造為直接從A至C的臺(tái)階,如果改造后每層臺(tái)階的高為22cm,那么改造后的臺(tái)階有多少層?(最后一個(gè)臺(tái)階的高超過(guò)15cm且不足22cm時(shí),按一個(gè)臺(tái)階計(jì)算.可能用到的數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),以為邊作正方形,請(qǐng)解決下列問(wèn)題:
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)求直線的解析式;
(3)在直線上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
(1)問(wèn)題發(fā)現(xiàn)
如圖1,和均為等邊三角形,點(diǎn)在同一直線上,連接.請(qǐng)寫出的度數(shù)及線段之間的數(shù)量關(guān)系,并說(shuō)明理由.
(2)類比探究
如圖2,和均為等腰直角三角形,,點(diǎn)在同一直線上,為中邊上的高,連接.
填空:①的度數(shù)為____________;
②線段之間的數(shù)量關(guān)系為_______________________________.
(3)拓展延伸
在(2)的條件下,若,則四邊形的面積為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是反比例函數(shù)的圖象的一個(gè)分支.
比例系數(shù)的值是________;
寫出該圖象的另一個(gè)分支上的個(gè)點(diǎn)的坐標(biāo):________、________;
當(dāng)在什么范圍取值時(shí),是小于的正數(shù)?
如果自變量取值范圍為,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“垃圾分類”意識(shí)已經(jīng)深入人心.我校王老師準(zhǔn)備用元(全部用完)購(gòu)買兩類垃圾桶,已知類桶單價(jià)元,類桶單價(jià)元,設(shè)購(gòu)入類桶個(gè),類桶個(gè).
(1)求關(guān)于的函數(shù)表達(dá)式.
(2)若購(gòu)進(jìn)的類桶不少于類桶的倍.
①求至少購(gòu)進(jìn)類桶多少個(gè)?
②根據(jù)臨場(chǎng)實(shí)際購(gòu)買情況,王老師在總費(fèi)用不變的情況下把一部分類桶調(diào)換成另一種類桶,且調(diào)換后類桶的數(shù)量不少于類桶的數(shù)量,已知類桶單價(jià)元,則按這樣的購(gòu)買方式,類桶最多可買 個(gè).(直接寫出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com