精英家教網 > 初中數學 > 題目詳情

【題目】如圖,BD是△ABC的角平分線,過點DDEBCAB于點E,DFABBC于點F

⑴求證:四邊形BEDF為菱形;

⑵如果∠A100°,C30°,求∠BDE的度數.

【答案】(1)證明見解析(2)25°

【解析】

(1)首先證明四邊形DEBF是平行四邊形,根據平行線的性質得到∠EDB=∠DBF,根據角平分線的性質得到∠ABD=∠DBF,等量代換得到∠ABD=∠EDB,得到DEBE,即可證明四邊形BEDF為菱形;

⑵根據三角形的內角和求出的度數,根據角平分線的性質得到的度數,根據平行線的性質即可求解.

1)∵DEBCDFAB

∴四邊形DEBF是平行四邊形

DEBC

∴∠EDB=∠DBF

BD平分∠ABC

∴∠ABD=∠DBFABC

∴∠ABD=∠EDB

DEBE

∴四邊形BEDF為菱形;

(2) A100°,C30°,

BD平分∠ABC

∴∠ABD=∠DBFABC

DEBC

∴∠EDB=∠DBF= 25°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知等腰直角,,為邊上一動點,連結,在射線上取一點使,若點運動到,則點運動的路徑長為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AMMN垂直,

1)證明:Rt△ABM ∽Rt△MCN;

2)設BM=x,梯形ABCN的面積為y,求yx之間的函數關系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;

3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2bxca、bc是常數,a≠0)經過原點O兩點,點P在該拋物線上運動,以點P為圓心的⊙P總經過定點A(0, 2)

1a= ,b= ,c= ;

2)求證:在點P運動的過程中,⊙P始終與x軸相交;

3)設⊙Px軸相交于M、N兩點,MN的左邊.當△AMN為等腰三角形時,直接寫出圓心P的橫坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在中,.半徑為的圓與邊相交于點與邊相交于點連結并延長,與線段的延長線交于點

1)當時,連結相似,求的長;

2)若的正切值;

3)若,設的周長為,求關于的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x這樣的方程,可以通過方程兩邊平方把它轉化為2x+3x2,解得x13,x2=﹣1.但由于兩邊平方,可能產生增根,所以需要檢驗,經檢驗,當x13時,3滿足題意;當x2=﹣1時,=﹣1不符合題意;所以原方程的解是x3.運用以上經驗,則方程x+1的解為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EABCDBC邊的中點,BDAE相交于F,則ABF與四邊形ECDF的面積之比等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年學校舉行足球聯賽,共賽17輪(即每隊均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負1場得0分.在這次足球比賽中,小虎足球隊得16分,且踢平場數是所負場數的整數倍,則小虎足球隊所負場數的情況有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數是甲工程隊單獨完成修路任務所需天數的1.5倍

(1)求甲、乙兩個工程隊每天各修路多少千米?

(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?

查看答案和解析>>

同步練習冊答案