【題目】如圖,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,若∠A=36°,則下列結(jié)論:①∠C=72°;②BD是∠ABC的平分線;③△ADB是等腰三角形;④△BCD的周長(zhǎng)=AB+BC.正確是______(填序號(hào)).
【答案】①②③④
【解析】
①,△ABC中,∠A=36°,AB=AC,根據(jù)等腰三角形的性質(zhì)與三角形內(nèi)角和定理,即可求得∠C的度數(shù);
對(duì)于②,分別求出∠ABD與∠DBC的度數(shù),便可判斷BD是否是∠ABC的平分線;
對(duì)于③,由線段垂直平分線的性質(zhì),得到AD=BD,即可判斷△ABD的形狀;
對(duì)于④,由AD=BD,AC=AB,根據(jù)三角形的周長(zhǎng)周長(zhǎng)公式及線段間的等量代換即可得△BCD的周長(zhǎng).
∵ AB=AC,
∴ ∠ABC=∠ACB.
∵ ∠BAC=36°,
∴ ∠ABC=∠ACB=72° .
故①正確;
∵ MN垂直平分AB,
∴ AD=BD,
∴ △ABD是等腰三角形,
∴ ∠BAC=∠ABD=36° .
∵ ∠ABD=36°,∠ABC=72°,
∴ ∠DBC=36°,
∴ BD平分∠ABC.
故②③正確;
∵ AD=BD,
∴ △BCD的周長(zhǎng)=BD+CD+BC=AD+DC+BC=AC+BC.
∵ AC=AB,
∴ △BCD的周長(zhǎng)=AB+BC.
故④正確.
綜上可知,結(jié)論中成立的有①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長(zhǎng)等于_________________;
(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積.
方法① __________________.方法② _____________________;
(3)觀察圖②,你能寫出(m+n)2,(m-n)2,mn這三個(gè)代數(shù)式之間的等量關(guān)系嗎?
答:________________________ .
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若a+b=6,ab=4,則求(a-b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織九年級(jí)學(xué)生參加漢字聽寫大賽,并隨機(jī)抽取部分學(xué)生成績(jī)作為樣本進(jìn)行分析,繪制成如下的統(tǒng)計(jì)表:
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)a=__________,b=__________;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)已知該年級(jí)有400名學(xué)生參加這次比賽,若成績(jī)?cè)?/span>90分以上(含90分)的為優(yōu),估計(jì)該年級(jí)成績(jī)?yōu)閮?yōu)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2400名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)估計(jì)全校所有學(xué)生中有多少人乘坐公交車上學(xué).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,交矩形的對(duì)角線BD于點(diǎn)E,點(diǎn)F是BC的中點(diǎn),連接EF.
(1)試判斷EF與⊙O的位置關(guān)系,并說明理由.
(2)若DC=2,EF=,點(diǎn)P是⊙O上不與E、C重合的任意一點(diǎn),則∠EPC的度數(shù)為 (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)0,添加下列條件后,能使ABCD成為矩形的是( 。
A. AB=ADB. AC=BDC. BD平分∠ABCD. AC⊥BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)含45°角的直角三角尺BEF和個(gè)正方形ABCD擺放在起,使三角尺的直角頂點(diǎn)和正方形的頂點(diǎn)B重合,連接DF,DE,M,N分別為DF,EF的中點(diǎn),連接MA,MN,下列結(jié)論錯(cuò)誤的是( 。
A. ∠ADF=∠CDEB. △DEF為等邊三角形
C. AM=MND. AM⊥MN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張明、王成兩位同學(xué)在初二學(xué)年10次數(shù)學(xué)單元檢測(cè)的成績(jī)(成績(jī)均為整數(shù),且個(gè)位數(shù)為0)如圖所示利用圖中提供的信息,解答下列問題:
(1)完成下表:
姓名 | 平均成績(jī) | 中位數(shù) | 眾數(shù) | 方差(s2) |
張明 |
| 80 | 80 |
|
王成 |
|
|
| 260 |
(2)如果將90分以上(含90分)的成績(jī)視為優(yōu)秀,則優(yōu)秀率較高的同學(xué)是 ;
(3)根據(jù)圖表信息,請(qǐng)你對(duì)這兩位同學(xué)各提出學(xué)習(xí)建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0.現(xiàn)將線段AB向下平移3個(gè)單位,再向左平移2個(gè)單位,得到線段CD,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)C,D.連接AC,BD.
(1)如圖①,求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積;
(2)在y軸上是否存在一點(diǎn)M,使三角形MCD的面積與四邊形ABDC的面積相等?若存在,求出點(diǎn)M的坐標(biāo),若不存在,試說明理由;
(3)如圖②,點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在直線BD上移動(dòng)時(shí)(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com