【題目】如圖,△ABC內(nèi)接于⊙O,AD是∠BAC的平分線,交BC于點(diǎn)M,交⊙O于點(diǎn)D.則圖中相似三角形共有(
A.2對(duì)
B.4對(duì)
C.6對(duì)
D.8對(duì)

【答案】C
【解析】解:∵AD是∠BAC的平分線, ∴∠BAD=∠CAD,BD=CD,
∴∠BAD=∠CAD=∠DBC=∠DCB,
又∵∠BDA=∠MDB,∠CDA=∠MDC
∴△ABD∽△BDM;△ADC∽△CDM;
∵∠CAD=∠CBD,∠AMC=∠BMD,
∴△AMC∽△BMD,
∵∠BAD=∠MCD,∠AMB=∠CMD,
∴△ABM∽△CDM,
∵∠ABC=∠ADC,∠BAD=∠DAC,
∴△ABM∽△ADC,
∵∠ACB=∠ADB,∠BAD=∠CAD,
∴△ACM∽△ADB,
∴共有六對(duì)相似三角形,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓周角定理的相關(guān)知識(shí),掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半,以及對(duì)相似三角形的判定的理解,了解相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過點(diǎn)EEGDE,使EG=DE,連接FG,F(xiàn)C.

(1)請(qǐng)判斷:FGCE的關(guān)系是___;

(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+ x+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,2).

(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一副三角尺如圖拼接:含角的三角尺的長(zhǎng)直角邊與含角的三角尺的斜邊恰好重合已知AC上的一個(gè)動(dòng)點(diǎn).

當(dāng)點(diǎn)P運(yùn)動(dòng)到的平分線上時(shí),連接DP,求DP的長(zhǎng);

當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中出現(xiàn)時(shí),求此時(shí)的度數(shù);

當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),以為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)DPBQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( 。

A. ,0) B. (2,0) C. ,0) D. (3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)過點(diǎn)(﹣1,0)和點(diǎn)(0,﹣3),且頂點(diǎn)在第四象限,設(shè)P=a+b+c,則P的取值范圍是(
A.﹣3<P<﹣1
B.﹣6<P<0
C.﹣3<P<0
D.﹣6<P<﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),動(dòng)點(diǎn)P在線段BC上以每秒2個(gè)單位長(zhǎng)的速度由點(diǎn)C向B 運(yùn)動(dòng).設(shè) 動(dòng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒

(1)當(dāng)t為何值時(shí),四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點(diǎn)Q,使得O、D、Q、P四點(diǎn)為頂點(diǎn)的四邊形是菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。

(3) 在線段PB上有一點(diǎn)M,且PM=5,當(dāng)P運(yùn)動(dòng) 秒時(shí),四邊形OAMP的周長(zhǎng)最小, 并畫圖標(biāo)出點(diǎn)M的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程(1):2x2-4x-5=0.(公式法) (2) x2-4x+1=0.(配方法)

(3)(y-1)2+2y(1-y)=0.(因式分解法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A、BC在數(shù)軸上對(duì)應(yīng)的數(shù)為,,多項(xiàng)式是關(guān)于字母xy的五次多項(xiàng)式.

(1)則a=__,b=__,=__;并將這三數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)AB、C表示出來(lái);

(2)已知螞蟻從點(diǎn)出發(fā),以每秒2cm的速度爬行,先到B點(diǎn),再到C點(diǎn),一共需要多少秒?

(3)數(shù)軸上在B點(diǎn)右邊有一點(diǎn)DA、B兩點(diǎn)的距離和為11,求點(diǎn)D的數(shù)軸上所對(duì)應(yīng)的數(shù);(直接寫出結(jié)果)

(友情提示:M、N之間距離記作|MN|,點(diǎn)M、N在數(shù)軸上對(duì)應(yīng)的數(shù)分別為m、n,則)

查看答案和解析>>

同步練習(xí)冊(cè)答案