【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,BC=12,cosB=,D、E分別是AB、BC邊上的中點(diǎn),AE與CD相交于點(diǎn)G.
(1)求CG的長(zhǎng);
(2)求tan∠BAE的值.
【答案】(1);(2)tan∠BAE=.
【解析】
(1)根據(jù)在Rt△ABC中,∠ACB=90°,BC=12,cosB=,可以求得AB的長(zhǎng),然后根據(jù)點(diǎn)D為AB的中點(diǎn),可以得到CD的長(zhǎng),再根據(jù)點(diǎn)G是△ABC中點(diǎn)的交點(diǎn),可以得到CG=CD,從而可以求得CG的長(zhǎng);
(2)作EF⊥AB于點(diǎn)G,然后根據(jù)題意,可以求得EF和AF的長(zhǎng),從而可以得到tan∠BAE的值.
解:(1)∵在Rt△ABC中,∠ACB=90°,BC=12,cosB=,
∴,
∵D是邊上的中點(diǎn),
∴,
又∵點(diǎn)E是BC邊上的中點(diǎn),
∴點(diǎn)G是△ABC的重心,
∴;
(2)∵點(diǎn)E是BC邊上的中點(diǎn),
∴,
過(guò)點(diǎn)E作EF⊥AB,垂足為F,
∵在Rt△BEF中,cosB=,
BF=BEcosB=,
∴,
∵AF=AB﹣BF=18﹣4=14,
∴tan∠BAE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1(2,1)在直線(xiàn)y=kx上,過(guò)點(diǎn)A1作A1B1∥y軸交x軸于點(diǎn)B1,以點(diǎn)A1為直角頂點(diǎn),A1B1為直角邊在A1B1的右側(cè)作等腰直角△A1B1C1,再過(guò)點(diǎn)C1作A2B2∥y軸,分別交直線(xiàn)y=kx和x軸于A2,B2兩點(diǎn),以點(diǎn)A2為直角頂點(diǎn),,A2B2為直角邊在A2B2的右側(cè)作等腰直角△A2B2C2…,按此規(guī)律進(jìn)行下去,則帶點(diǎn)Cn的坐標(biāo)為_________________.(結(jié)果用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC中,∠B=45°,∠C=60°,BC=4,D、F分別為AB、AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)D分別作DF⊥AC于F,DG⊥BC于G,那么FG的最小值為()
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線(xiàn);
(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市快遞員的收入情況,現(xiàn)隨機(jī)抽取了甲、乙兩家快遞公司50天的送貨單,對(duì)兩個(gè)公司的快遞員人均每天的送貨單數(shù)進(jìn)行統(tǒng)計(jì),數(shù)據(jù)如下:
已知這兩家快遞公司的快遞員的日工資方案 為:甲公司規(guī)定底薪70元,每單抽成1 元;乙公司規(guī)定底薪90元,每日前40單無(wú)抽成,超過(guò)40單的部分每單抽成3元.
(1)現(xiàn)從這50天中隨機(jī)抽取1天,求這一天乙公司快遞員人均送貨單數(shù)超過(guò)40(不含40)單的概率;
(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù),若將各公司快遞員的人均送貨單數(shù)視為該公司各快遞員的送貨單數(shù),
①估計(jì)甲快遞公可各快遞員的日均送貨單數(shù):
②小明擬到甲、乙兩家快遞公司中的一家應(yīng)聘快遞員的工作.如果僅從工資收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.為了解全國(guó)中學(xué)生視力的情況,應(yīng)采用普查的方式
B.某種彩票中獎(jiǎng)的概率是,買(mǎi)1000張這種彩票一定會(huì)中獎(jiǎng)
C.從2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生
D.從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)P(m,n)在一次函數(shù) 的圖像上,將點(diǎn)P繞點(diǎn)A(,)逆時(shí)針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P.
(1)當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
(2)試說(shuō)明:不論m為何值,點(diǎn)P的縱坐標(biāo)始終不變;
(3)如圖2,過(guò)點(diǎn)P作x軸的垂線(xiàn)交直線(xiàn)AP于點(diǎn)B,若直線(xiàn)PB與二次函數(shù) 的圖像交于點(diǎn)Q,當(dāng)m>0時(shí),試判斷點(diǎn)B是否一定在點(diǎn)Q的上方,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店在兩周內(nèi),將標(biāo)價(jià)為10元/斤的某種水果,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為8.1元/斤,并且兩次降價(jià)的百分率相同.
(1)求該種水果每次降價(jià)的百分率;
(2)從第一次降價(jià)的第1天算起,第x天(x為整數(shù))的售價(jià)、銷(xiāo)量及儲(chǔ)存和損耗費(fèi)用的相關(guān)信息如表所示.已知該種水果的進(jìn)價(jià)為4.1元/斤,設(shè)銷(xiāo)售該水果第x(天)的利潤(rùn)為y(元),求y與x(1≤x<15)之間的函數(shù)關(guān)系式,并求出第幾天時(shí)銷(xiāo)售利潤(rùn)最大?
時(shí)間x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售價(jià)(元/斤) | 第1次降價(jià)后的價(jià)格 | 第2次降價(jià)后的價(jià)格 | |
銷(xiāo)量(斤) | 80﹣3x | 120﹣x | |
儲(chǔ)存和損耗費(fèi)用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的條件下,若要使第15天的利潤(rùn)比(2)中最大利潤(rùn)最多少127.5元,則第15天在第14天的價(jià)格基礎(chǔ)上最多可降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線(xiàn) 分別為x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,m)是y軸上一個(gè)動(dòng)點(diǎn),若以點(diǎn)P為圓心的圓P與x軸和直線(xiàn)l都相切,則m的值是_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com