小玉同學(xué)想用一張面積為900平方厘米的正方體紙片,沿著邊的方向裁出一張面積為560平方厘米的長方形紙片,使它的長寬之比為2:1,但不知道是否能裁出來.小芳看見了說:“很明顯,一定能用一張面積大的紙片裁出一張面積小的紙片.”你同意小芳的觀點(diǎn)嗎?小玉能用這塊紙片裁出符合要求的紙片嗎?
考點(diǎn):一元二次方程的應(yīng)用
專題:幾何圖形問題
分析:設(shè)長方形紙片的長為2xcm,寬為xcm,根據(jù)題意得出方程2x•x=560,求出長方形的邊長,再根據(jù)正方形的面積公式求出正方形邊長,然后兩者進(jìn)行比較即可得出答案.
解答:解:不同意,理由如下:
∵正方形紙片的面積是900平方厘米,
∴正方形紙片的邊長是30厘米,
設(shè)長方形紙片的長為2xcm,寬為xcm.根據(jù)題意得:
2x•x=560,
解得:x1=2
70
,x2=-2
70
(不合題意,舍去),
則長方形紙片的長為4
70
厘米,
∵4
70
>30,
∴長方形紙片的長超過了正方形紙片的長,小玉不能用這塊紙片裁出符合要求的紙片.
點(diǎn)評(píng):此題考查了一元二次方程的應(yīng)用,用到的知識(shí)點(diǎn)是算術(shù)平方根、估算無理數(shù)的大小的應(yīng)用、正方形的面積公式,關(guān)鍵是根據(jù)題意求出長方形紙片的長.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

因式分解:(x2+2x)2+2(x2+2x)+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2-3x+4關(guān)于直線y=-2對(duì)稱的圖象解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B、C、D是圓上的四點(diǎn),AC=BD,求證:AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線l1、l2相交于點(diǎn)P,試求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀后作答:我們已經(jīng)知道,根據(jù)幾何圖形的面積關(guān)系可以說明完全平方,實(shí)際上還有一些等式也可以用這種方式加以說明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用圖①的面積關(guān)系來說明.
(1)根據(jù)圖②寫出一個(gè)等式:
 

(2)已知等式:(x+1)(x+3)=x2+4x+3,請(qǐng)你畫出一個(gè)相應(yīng)的幾何圖形加以說明(仿照?qǐng)D①或圖②畫出圖形即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A、B兩點(diǎn)在數(shù)軸上表示的數(shù)分別是a、b.
下列結(jié)論:①a-b>0;②a+b>0;③(b-1)(a-1)<0;④
b-1
|a-1|
>0,其中結(jié)論正確的是(  )
A、①②B、②③④
C、①③D、①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平面上有兩點(diǎn)A、B,它們之間的距離是5cm,分別就下列條件研究點(diǎn)P的存在性及點(diǎn)P與線段AB的位置關(guān)系,若存在,請(qǐng)作圖說明.
(1)點(diǎn)P到A、B兩點(diǎn)距離之和等于5cm;
(2)點(diǎn)P到A、B兩點(diǎn)距離之和大于5cm;
(3)點(diǎn)P到A、B兩點(diǎn)距離之和小于5cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O的半徑為10,P為⊙O內(nèi)一點(diǎn),且OP=6,則過P點(diǎn),且長度為整數(shù)的弦有
 
條.

查看答案和解析>>

同步練習(xí)冊(cè)答案