如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點E.在△ABC外有一點F,使FA⊥AE,F(xiàn)C⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:①ME⊥BC;②DE=DN.
(1)證明見解析;(2)①證明見解析;②證明見解析.
【解析】
試題分析:(1)通過角的轉(zhuǎn)換和等腰直角三角形的性質(zhì),得到∠BAE=∠CAF和∠B=∠FCA,從而ASA證明△ABF≌△ACF,根據(jù)全等三角形對應(yīng)邊相等得到結(jié)論.
(2)①過E點作EG⊥AB于點G,通過證明EG是BM的垂直平分線就易得出結(jié)論.
②通過證明Rt△AMC≌Rt△EMC和△ADE≌△CDN來證明結(jié)論.
試題解析:(1)如圖,∵∠BAC=90°,F(xiàn)A⊥AE,∴∠1+∠EAC=90°,∠2+∠EAC=90°.
∴∠1=∠2.
又∵AB=AC,∴∠B=∠ACB=45°.
∵FC⊥BC,∴∠FCA=90°-∠ACB=45°.∴∠B=∠FCA.
∴△ABF≌△ACF(ASA).∴BE=CF.
(2)①如圖,過E點作EG⊥AB于點G,
∵∠B=45°,∴△CBE是等腰直角三角形.∴BG=EG,∠3=45°.
∵BM=2DE,∴BM=2BG,即點G是BM的中點.∴EG是BM的垂直平分線.∴∠4=∠3=45°.
∴∠MEB=∠4+∠3=90°.∴ME⊥BC.
②∵AD⊥BC,∴ME∥AD.∴∠5=∠6.
∵∠1=∠5,∴∠1=∠6.∴AM=EM.
∵MC=MC,∴Rt△AMC≌Rt△EMC(HL).∴∠7=∠8.
∵∠BAC=90°,,AB=AC,∴∠ACB=45°,∠BAD=∠CAD=45°.
∴∠5=∠7=22.5°,AD=CD.
∵∠ADE=∠CDN=90°,∴△ADE≌△CDN(ASA).∴DE=DN.
考點:1.等腰直角三角形的判定和性質(zhì);2.全等三角形的判定和性質(zhì);3.線段垂直平分線的判定和性質(zhì).
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(黑龍江大慶卷)數(shù)學(xué)(解析版) 題型:填空題
某記者抽樣調(diào)查了某校一些學(xué)生假期用于讀書的時間(單位:分鐘)后,繪制了頻數(shù)分布直方圖,從左到右的前5個長方形相對應(yīng)的頻率之和為0.9,最后一組的頻數(shù)是15,則此次抽樣調(diào)查的人數(shù)為 人.(注:橫軸上每組數(shù)據(jù)包含最小值不包含最大值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:解答題
今年5月1日起實施《青海省保障性住房準(zhǔn)入分配退出和運營管理實施細則》規(guī)定:公共租賃住房和廉租住房并軌運行(以下簡稱并軌房),計劃10年內(nèi)解決低收入人群住房問題.已知第x年(x為正整數(shù))投入使用的并軌房面積為y百萬平方米,且y與x的函數(shù)關(guān)系式為y=-x+5.由于物價上漲等因素的影響,每年單位面積租金也隨之上調(diào).假設(shè)每年的并軌房全部出租完,預(yù)計第x年投入使用的并軌房的單位面積租金z與時間x滿足一次函數(shù)關(guān)系如下表:
時間x(單位:年,x為正整數(shù)) | 1 | 2 | 3 | 4 | 5 | … |
單位面積租金z(單位:元/平方米) | 50 | 52 | 54 | 56 | 58 |
|
(1)求出z與x的函數(shù)關(guān)系式;
(2)設(shè)第x年政府投入使用的并軌房收取的租金為W百萬元,請問政府在第幾年投入使用的并軌房收取的租金最多,最多為多少百萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C′處;作∠BPC′的平分線交AB于點E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(青海西寧卷)數(shù)學(xué)(解析版) 題型:選擇題
下列線段能構(gòu)成三角形的是( 。
A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(重慶A卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,反比例函數(shù)在第二象限的圖象上有兩點A、B,它們的橫坐標(biāo)分別為-1,-3.直線AB與x軸交于點C,則△AOC的面積為( )
A.8 B.10 C.12 D.24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(遼寧阜新卷)數(shù)學(xué)(解析版) 題型:解答題
(1)計算:
(2)先化簡,再求值:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(貴州黔西卷)數(shù)學(xué)(解析版) 題型:解答題
如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線,垂足點為E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標(biāo);
(2)如果P點的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取到最大值時,過點P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為點P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com