【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線;
(2)若CD=2,BP=1,求⊙O的半徑.
【答案】(1)見解析;(2)3
【解析】
(1)由圓周角定理得出∠ABC=∠ADC,由已知得出∠ADC=∠AFB,證出CD∥BF,得出AB⊥BF,即可得出結(jié)論;
(2)設(shè)⊙O的半徑為r,連接OD.由垂徑定理得出PD=PC=CD=,得出OP=r-1在Rt△OPD中,由勾股定理得出方程,解方程即可.
解:(1)證明:∵弧AC=弧AC,
∴∠ABC=∠ADC,
∵∠AFB=∠ABC,
∴∠ADC=∠AFB,
∴CD∥BF,
∵CD⊥AB,
∴AB⊥BF,
∵AB是圓的直徑,
∴直線BF是⊙O的切線;
(2)解:設(shè)⊙O的半徑為r,連接OD.如圖所示:
∵AB⊥BF,CD=2,
∴PD=PC=CD=,
∵BP=1,
∴OP=r﹣1
在Rt△OPD中,由勾股定理得:r2 =(r﹣1)2+()2
解得:r=3.
即⊙O的半徑為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)圍繞“哈爾濱市周邊五大名山,即:香爐山、鳳凰山、金龍山、帽兒山、二龍山,你最喜歡那一座山?(每名學(xué)生必選且只選一座山)的問題在全校范圍內(nèi)隨機抽取了部分學(xué)生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖的不完整的統(tǒng)計圖:
(1)求本次調(diào)查的樣本容量;
(2)求本次調(diào)查中,最喜歡鳳凰山的學(xué)生人數(shù),并補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生1200人,請你估計該中學(xué)最喜歡香爐山的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB>AC,∠BAC的平分線交外接圓于D,DE⊥AB于E,DM⊥AC于M.
(1)求證:BE=CM.
(2)求證:AB﹣AC=2BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax+bx+c的x,y的對應(yīng)值如下表:
x | … | -1 | 0 | 1 | 2 | … | |||
y | … | -1 | m | 1 | n | … |
下列關(guān)于該函數(shù)性質(zhì)的判斷:①該二次函數(shù)有最大值;②當(dāng)x>0時,函數(shù)y隨x的增大而減小;③不等式y<﹣1的解集是﹣1<x<2;④關(guān)于x的一元二次方程ax2+bx+c=0的兩個實數(shù)根分別位于﹣1<x<和<x<2之間.其中正確結(jié)論的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點C順時針旋轉(zhuǎn)36°,得到△,點B′在AB邊上,交AC于E,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是( )
A.①②B.① ③C.②③D.① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新羅區(qū)某校元旦文藝匯演,需要從3名女生和1名男生中隨機選擇主持人.
(1)如果選擇1名主持人,那么男生當(dāng)選的概率是多少?
(2)如果選擇2名主持人,用畫樹狀圖(或列表)求出2名主持人恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的斜邊BC=4,∠ABC=30°,以AB、AC為直徑分別作圓.則這兩圓的公共部分面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是邊BC的中點,聯(lián)結(jié)AD.過點C作CE⊥AD于點E,聯(lián)結(jié)BE.
(1)求證:BD2=DEAD;
(2)如果∠ABC=∠DCE,求證:BDCE=BEDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱(此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系),當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降,此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系,當(dāng)水溫降至20C時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明上午八點將飲水機在通電開機(此時飲水機中原有水的溫度為20℃后即外出散步,預(yù)計上午八點半散步回到家中,回到家時,他能喝到飲水機內(nèi)不低于30℃的水嗎?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com