已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).

(1)畫出△ABC向下平移4個(gè)單位長度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是   ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是。  ;

(3)△A2B2C2的面積是   平方單位.


              解:(1)如圖所示:C1(2,﹣2);

故答案為:(2,﹣2);

(2)如圖所示:C2(1,0);

故答案為:(1,0);

(3)∵A2C22=20,B2C=20,A2B2=40,

∴△A2B2C2是等腰直角三角形,

∴△A2B2C2的面積是:×20=10平方單位.

故答案為:10.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點(diǎn)C,F(xiàn)在線段BE上,BF=EC,∠1=∠2,請你添加一個(gè)條件,使△ABC≌△DEF,并加以證明.(不再添加輔助線和字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


,則=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知△ABC的三邊長分別為,,2,△A′B′C′的兩邊長分別是1和,如果△ABC與△A′B′C′相似,那么△A′B′C′的第三邊長應(yīng)該是( 。

A.             B.           C.           D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,AB∥CD∥EF,如果AC:CE=2:3,BF=10,那么線段DF的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D.點(diǎn)E、F分別在邊AB、AC上,且BE=AF,F(xiàn)G∥AB交線段AD于點(diǎn)G,連接BG、EF.

(1)求證:四邊形BGFE是平行四邊形;

(2)若△ABG∽△AGF,AB=10,AG=6,求線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知⊙O的面積為2π,則其內(nèi)接正三角形的面積為( 。

A.  3          B.3          C.          D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接AD,BD,CD

(1)求證:AD=CD;

(2)若AB=10,cos∠ABC=,求tan∠DBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


cos60°= 

查看答案和解析>>

同步練習(xí)冊答案