【題目】從甲地到乙地有A,B,C三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
公交車用時(shí) 公交車用時(shí)的頻數(shù) 線路 | 合計(jì) | ||||
A | 59 | 151 | 166 | 124 | 500 |
B | 50 | 50 | 122 | 278 | 500 |
C | 45 | 265 | 167 | 23 | 500 |
早高峰期間,乘坐_________(填“A”,“B”或“C”)線路上的公交車,從甲地到乙地“用時(shí)不超過45分鐘”的可能性最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長是4厘米,∠B=60°,動(dòng)點(diǎn)P以1厘米/秒的速度自A點(diǎn)出發(fā)沿AB方向運(yùn)動(dòng),動(dòng)點(diǎn)Q以2厘米/秒的速度自B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng)至C點(diǎn)停止,同時(shí)P點(diǎn)也停止運(yùn)動(dòng)若點(diǎn)P,Q同時(shí)出發(fā)運(yùn)動(dòng)了t秒,記△BPQ的面積為S厘米2,下面圖象中能表示S與t之間的函數(shù)關(guān)系的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)生在旗桿EF與實(shí)驗(yàn)樓CD之間的A處,測得∠EAF=60°,然后向左移動(dòng)10米到B處,測得∠EBF=30°,∠CBD=45°,tan∠CAD= .
(1)求旗桿EF的高(結(jié)果保留根號(hào));
(2)求旗桿EF與實(shí)驗(yàn)樓CD之間的水平距離DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過點(diǎn)A、B、C,拋物線y2經(jīng)過點(diǎn)B、C、D,拋物線y3經(jīng)過點(diǎn)A、B、D,拋物線y4經(jīng)過點(diǎn)A、C、D.下列判斷:
①四條拋物線的開口方向均向下;
②當(dāng)x<0時(shí),至少有一條拋物線表達(dá)式中的y均隨x的增大而減;
③拋物線y1的頂點(diǎn)在拋物線y2頂點(diǎn)的上方;
④拋物線y4與y軸的交點(diǎn)在點(diǎn)B的上方.
所有正確結(jié)論的序號(hào)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AD=6,點(diǎn) E 是對角線 AC 上一點(diǎn),連接 DE,過點(diǎn) E 作 EF⊥ ED,交 AB 于點(diǎn) F,連接 DF,交 AC 于點(diǎn) G,將△EFG 沿 EF 翻折,得到△EFM,連接DM,交 EF 于點(diǎn) N,若點(diǎn) F 是 AB 邊的中點(diǎn),則 △EDM 的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)A(1,2).
(1)當(dāng)b=1,c=﹣4時(shí),求該二次函數(shù)的表達(dá)式;
(2)已知點(diǎn)M(t﹣1,5),N(t+1,5)在該二次函數(shù)的圖象上,請直接寫出t的取值范圍;
(3)當(dāng)a=1時(shí),若該二次函數(shù)的圖象與直線y=3x﹣1交于點(diǎn)P,Q,將此拋物線在直線PQ下方的部分圖象記為C,
①試判斷此拋物線的頂點(diǎn)是否一定在圖象C上?若是,請證明;若不是,請舉反例;
②已知點(diǎn)P關(guān)于拋物線對稱軸的對稱點(diǎn)為P′,若P′在圖象C上,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,連接,過B作軸,垂足為C.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)F為OB中點(diǎn).
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)E為x軸上一動(dòng)點(diǎn),當(dāng)△BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FE﹣DE|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=a(x﹣)(x+)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線DE是拋物線的對稱軸,點(diǎn)D在x軸上,點(diǎn)E在拋物線上,直線y=kx+過點(diǎn)A、C.
(1)求拋物線的解析式;
(2)點(diǎn)P是第二象限對稱軸左側(cè)拋物線上一點(diǎn),過點(diǎn)P作PQ∥AC交對稱軸于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QD的長為d,求d與t的函數(shù)解析式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,直線AC與對稱軸交于點(diǎn)F,點(diǎn)M在對稱軸ED上,連接AM、AE,∠AMD=2∠EAM,過點(diǎn)A作AG⊥AM交過點(diǎn)D平行于AE的直線于點(diǎn)G,點(diǎn)N是線段BP延長線上一點(diǎn),連接AN、MN、NF,若四邊形NMGA與四邊形NFDA的面積相等,且FN∥AM,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com