【題目】如圖,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的動(dòng)點(diǎn).以BC為邊作正方形BCDE,當(dāng)點(diǎn)C從點(diǎn)A移動(dòng)至點(diǎn)B時(shí),點(diǎn)D經(jīng)過的路徑長(zhǎng)是_____.
【答案】2 π
【解析】
如圖,由此BO交⊙O于F,取的中點(diǎn)H,連接FH、HB、BD.易知△FHB是等腰直角三角形,HF=HB,∠FHB=90°,由∠FDB=45°=∠FHB,推出點(diǎn)D在⊙H上運(yùn)動(dòng),軌跡是(圖中紅線),易知∠HFG=∠HGF=15°,推出∠FHG=150°,推出∠GHB=120°,易知HB=3,利用弧長(zhǎng)公式即可解決問題.
如圖,由此BO交⊙O于F,取的中點(diǎn)H,連接FH、HB、BD.
易知△FHB是等腰直角三角形,HF=HB,∠FHB=90°,
∵∠FDB=45°=∠FHB,
∴點(diǎn)D在⊙H上運(yùn)動(dòng),軌跡是(圖中紅線),
易知∠HFG=∠HGF=15°,
∴∠FHG=150°,
∴∠GHB=120°,易知HB=3,
∴點(diǎn)D的運(yùn)動(dòng)軌跡的長(zhǎng)為π.
故答案為2π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過x軸上兩點(diǎn)A(9,0),C(-3,0),且與y軸交于點(diǎn)B(0,-12).
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問當(dāng)t為何值時(shí),△APQ∽△AOB?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②當(dāng)點(diǎn)M運(yùn)動(dòng)到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBNA面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,在上取兩點(diǎn)在左邊),以為邊作等邊三角形,使頂點(diǎn)在上.
(1)求△PEF的邊長(zhǎng);
(2)若△PEF的邊在線段上移動(dòng).分別交于點(diǎn).求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,E為BC上一點(diǎn),以CE為直徑作⊙O,AB與⊙O相切于點(diǎn)D,連接CD,若BE=OE=2.
(1)求證:∠A=2∠DCB;
(2)求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是半徑為6cm的⊙O上的定點(diǎn),動(dòng)點(diǎn)P從A出發(fā),以πcm/s的速度沿圓周按順時(shí)針方向運(yùn)動(dòng),當(dāng)點(diǎn)P回到A時(shí)立即停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t(s);
(1)當(dāng)t=6s時(shí),∠POA的度數(shù)是________;
(2)當(dāng)t為多少時(shí),∠POA=120°;
(3)如果點(diǎn)B是OA延長(zhǎng)線上的一點(diǎn),且AB=AO,問t為多少時(shí),△POB為直角三角形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)坐標(biāo)為M(1,4),且經(jīng)過點(diǎn)N(2,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C、設(shè)直線CM與x軸交于點(diǎn)D.
(1)求拋物線的解析式.
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),且與直線CD相切?若存在,求出P的坐標(biāo);若不存在.請(qǐng)說明理由.
(3)設(shè)直線y=kx+2與拋物線交于Q、R兩點(diǎn),若原點(diǎn)O在以QR為直徑的圓外,請(qǐng)直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AC=DC,AC⊥DC,直線MN經(jīng)過點(diǎn)A,作DB⊥MN,垂足為B,連接CB.
(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;
(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;
②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;
(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CD⊥AB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長(zhǎng)線交于點(diǎn)E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長(zhǎng);
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,山區(qū)某教學(xué)樓后面緊鄰著一個(gè)土坡,坡面BC平行于地面AD,斜坡AB的坡比為i=1:,且AB=26米,為了防止山體滑坡,保障安全,學(xué)校決定對(duì)該土坡進(jìn)行改造,經(jīng)地質(zhì)人員勘測(cè),當(dāng)坡角不超過53°時(shí),可確保山體不滑坡;
(1)求改造前坡頂與地面的距離BE的長(zhǎng);
(2)為了消除安全隱患,學(xué)校計(jì)劃將斜坡AB改造成AF(如圖所示),那么BF至少是多少米?(結(jié)果精確到1米)
【參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75】
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com