如圖,已知拋物線(xiàn)y1=﹣2x2+2,直線(xiàn)y2=﹣2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較大值記為M;若y1=y2,記M=y1=y2。例如:當(dāng)x=﹣1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=4。下列判斷:
①當(dāng)x<0時(shí),y1>y2;
②當(dāng)x>0時(shí),x值越大,M值越小;
③當(dāng)x≥0時(shí),使得M大于2的x值不存在;
④使得M=1的x值是。
其中正確的有【 】
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
C。
【考點(diǎn)】一次函數(shù),二次函數(shù)的圖象和性質(zhì)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,二次函數(shù)y=-x2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(4,0)B(-4,-4),且與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式;
(2)證明:∠BAO=∠CAO(其中O是原點(diǎn));
(3)若P是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過(guò)P作y軸的平行線(xiàn),分別交此二次函數(shù)圖像及x軸于Q、H兩點(diǎn),試問(wèn):是否存在這樣的點(diǎn) P,使PH=2QH?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(3,-2),則當(dāng)x<-3時(shí),函數(shù)值的取值范圍是【 】
A. >3 B.0<<3 C. >2 D.0<<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在青島市開(kāi)展的創(chuàng)城活動(dòng)中,某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上修建一個(gè)矩形花園,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成(如圖所示).若設(shè)花園的(m),花園的面積為(m).
(1)求與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)滿(mǎn)足條件的花園面積能達(dá)到200 m嗎?若能,求出此時(shí)的值;若不能,說(shuō)明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,描述其圖象的變化趨勢(shì);并結(jié)合題意判斷當(dāng)取何值時(shí),花園的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平行四邊形ABCD中,,點(diǎn)的坐標(biāo)是,以點(diǎn)為頂點(diǎn)的拋物線(xiàn)經(jīng)過(guò)軸上的點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)若拋物線(xiàn)向上平移后恰好經(jīng)過(guò)點(diǎn),求平移后拋物線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若關(guān)于x的一元二次方程有實(shí)數(shù)根x1,x2,且x1≠x2,有下列結(jié)論:
①x1=1,x2=2; ②;
③二次函數(shù)y=的圖象與x軸交點(diǎn)的坐標(biāo)為(1,0)和(2,0)。
其中,正確結(jié)論的個(gè)數(shù)是【 】
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
向一個(gè)圖案如下圖所示的正六邊形靶子上隨意拋一枚飛鏢,則飛鏢插不落在陰影區(qū)域的概率為【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,矩形ABCD中,AB=6,BC=8,點(diǎn)E、F分別是BC、CD邊上的點(diǎn),且AE⊥EF,BE=2,
(1)求證:AE=EF;
(2)延長(zhǎng)EF交矩形∠BCD的外角平分線(xiàn)CP于點(diǎn)P(圖2),試求AE與EP的數(shù)量關(guān)系;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,大正方形的邊長(zhǎng)為4,小正方形的邊長(zhǎng)為2,狀態(tài)如圖所示.大正方形固定不動(dòng),把小正方形以的速度向大正方形的內(nèi)部沿直線(xiàn)平移,設(shè)平移的時(shí)間為秒,兩個(gè)正方形重疊部分的面積為,完成下列問(wèn)題:
(1).用含的式子表示,要求畫(huà)出相應(yīng)的圖形,表明的范圍;
(2).當(dāng),求重疊部分的面積;
(3).當(dāng),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com