【題目】如圖,直線y=-x-3與x軸,y軸分別交于點(diǎn)A,C,經(jīng)過點(diǎn)A,C的拋物線y=ax2+bx﹣3與x軸的另一個(gè)交點(diǎn)為點(diǎn)B(2,0),點(diǎn)D是拋物線上一點(diǎn),過點(diǎn)D作DE⊥x軸于點(diǎn)E,連接AD,DC.設(shè)點(diǎn)D的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)D在第三象限,設(shè)△DAC的面積為S,求S與m的函數(shù)關(guān)系式,并求出S的最大值及此時(shí)點(diǎn)D的坐標(biāo);
(3)連接BC,若∠EAD=∠OBC,請(qǐng)直接寫出此時(shí)點(diǎn)D的坐標(biāo).
【答案】(1)y=x2+x﹣3;(2)S△ADC=﹣(m+3)2+;△ADC的面積最大值為;此時(shí)D(﹣3,﹣);(3)滿足條件的點(diǎn)D坐標(biāo)為(﹣4,﹣3)或(8,21).
【解析】
(1)求出A坐標(biāo),再用待定系數(shù)法求解析式;(2)設(shè)DE與AC的交點(diǎn)為點(diǎn)F.設(shè)點(diǎn)D的坐標(biāo)為:(m,m2+m﹣3),則點(diǎn)F的坐標(biāo)為:(m,﹣m﹣3),根據(jù)S△ADC=S△ADF+S△DFC求出解析式,再求最值;(3)①當(dāng)點(diǎn)D與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱時(shí),D(﹣4,﹣3),根據(jù)對(duì)稱性此時(shí)∠EAD=∠ABC.
②作點(diǎn)D(﹣4,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)D′(﹣4,3),直線AD′的解析式為y=x+9,解方程組求出函數(shù)圖像交點(diǎn)坐標(biāo).
解:(1)在y=﹣x﹣3中,當(dāng)y=0時(shí),x=﹣6,
即點(diǎn)A的坐標(biāo)為:(﹣6,0),
將A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:
,
解得:,
∴拋物線的解析式為:y=x2+x﹣3;
(2)設(shè)點(diǎn)D的坐標(biāo)為:(m,m2+m﹣3),則點(diǎn)F的坐標(biāo)為:(m,﹣m﹣3),
設(shè)DE與AC的交點(diǎn)為點(diǎn)F.
∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,
∴S△ADC=S△ADF+S△DFC
=DFAE+DFOE
=DFOA
=×(﹣m2﹣m)×6
=﹣m2﹣m
=﹣(m+3)2+,
∵a=﹣<0,
∴拋物線開口向下,
∴當(dāng)m=﹣3時(shí),S△ADC存在最大值,
又∵當(dāng)m=﹣3時(shí),m2+m﹣3=﹣,
∴存在點(diǎn)D(﹣3,﹣),使得△ADC的面積最大,最大值為;
(3)①當(dāng)點(diǎn)D與點(diǎn)C關(guān)于對(duì)稱軸對(duì)稱時(shí),D(﹣4,﹣3),根據(jù)對(duì)稱性此時(shí)∠EAD=∠ABC.
②作點(diǎn)D(﹣4,﹣3)關(guān)于x軸的對(duì)稱點(diǎn)D′(﹣4,3),
直線AD′的解析式為y=x+9,
由,解得或,
此時(shí)直線AD′與拋物線交于D(8,21),滿足條件,
綜上所述,滿足條件的點(diǎn)D坐標(biāo)為(﹣4,﹣3)或(8,21
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)部某一玩具價(jià)格如圖所示,現(xiàn)有甲、乙兩個(gè)商店,計(jì)劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個(gè),乙商店所需數(shù)量不超過50個(gè),設(shè)甲商店購買個(gè).如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.
(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若甲商店購買不超過100個(gè),請(qǐng)說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;
(3)“六一”兒童節(jié)之后,該批發(fā)部對(duì)此玩具價(jià)格作了如下調(diào)整:數(shù)量不超過100個(gè)時(shí),價(jià)格不變;數(shù)量超過100個(gè)時(shí),每個(gè)玩具降價(jià)a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),∠OAB=90°且OA=AB,OB=8,OC=5.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)P是從O點(diǎn)出發(fā),沿X軸正半軸方向以每秒1單位長(zhǎng)度的速度運(yùn)動(dòng)至點(diǎn)B的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過點(diǎn)P的直線l與y軸平行,交四邊形ABCD的邊AO或AB于點(diǎn)Q,交OC或BC于點(diǎn)R.設(shè)運(yùn)動(dòng)時(shí)間為t(s),已知t=3時(shí),直線l恰好經(jīng)過點(diǎn) C.
求①點(diǎn)P出發(fā)時(shí)同時(shí)點(diǎn)E也從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)P停止時(shí)點(diǎn)E也停止.設(shè)△QRE的面積為S,求當(dāng)0<t<3時(shí)S與t的函數(shù)關(guān)系式;并直接寫出S的最大值.
②是否存在某一時(shí)刻t,使得△ORE為直角三角形?若存在,請(qǐng)求出相應(yīng)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點(diǎn)O為圓心,OA為半徑作⊙O,⊙O恰好經(jīng)過邊BC的中點(diǎn)D,并與邊AC相交于另一點(diǎn)F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動(dòng)點(diǎn),連接AE,AD,DE.
填空:
①當(dāng)的長(zhǎng)度是____________時(shí),四邊形ABDE是菱形;
②當(dāng)的長(zhǎng)度是____________時(shí),△ADE是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為的直徑,點(diǎn)、在上,連接、交于點(diǎn),過點(diǎn)作的切線交的延長(zhǎng)于點(diǎn),且于點(diǎn).
(1)如圖,求證:;
(2)如圖,連接,點(diǎn)在上,連接,若,求證:;
(3)如圖,在(2)的條件下,作交于點(diǎn),過點(diǎn)作交于點(diǎn),連接,若, ,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD,過E作EF∥DC交BC的延長(zhǎng)線于F若平行四邊形CDEF的周長(zhǎng)是25cm,AC的長(zhǎng)為5cm,則的長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次“尋寶”游戲中,“尋寶”人在如圖23-6-9所示的藏寶圖中找到了兩個(gè)標(biāo)志點(diǎn)A(2,3),B(4,1),A,B兩點(diǎn)到“寶藏”點(diǎn)的距離相等,則“寶藏”點(diǎn)的可能坐標(biāo)是________(填一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m:y=kx(k>0)與直線n:相交于點(diǎn)C,點(diǎn)A、B為直線n與坐標(biāo)軸的交點(diǎn),∠COA=60°,點(diǎn)P從O點(diǎn)出發(fā)沿線段OC向點(diǎn)C勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,同時(shí)點(diǎn)Q從點(diǎn)A出發(fā)沿線段AO向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)k= ;
(2)記△POQ的面積為S,求t為何值時(shí)S取得最大值;
(3)當(dāng)△POQ的面積最大時(shí),以PQ為直徑的圓與直線n有怎樣的位置關(guān)系,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com