【題目】如圖,矩形ABCD中,對角線AC、BD交于點(diǎn)O,點(diǎn)E是BC上一點(diǎn),且AB=BE,∠1=15°,則∠2的度數(shù)是( 。
A.25°B.30°C.35°D.15°
【答案】B
【解析】
根據(jù)矩形的性質(zhì)得出∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,求出OB=OC,OB=OA,根據(jù)矩形性質(zhì)和已知求出∠BAE=∠DAE=45°,求出∠OBC=∠OCB=30°,求出△AOB是等邊三角形,推出AB=OB=BE,求出∠OEB=75°,最后減去∠AEB的度數(shù),即可求出答案.
解:∵四邊形ABCD是矩形,
∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,
∴OB=OC,OB=OA,
∴∠OCB=∠OBC,
∵AB=BE,∠ABE=90°,
∴∠BAE=∠AEB=45°,
∵∠1=15°,
∴∠OCB=∠AEB﹣∠EAC=45°﹣15°=30°,
∴∠OBC=∠OCB=30°,
∴∠AOB=30°+30°=60°,
∵OA=OB,
∴△AOB是等邊三角形,
∴AB=OB,
∵∠BAE=∠AEB=45°,
∴AB=BE,
∴OB=BE,
∴∠OEB=∠EOB,
∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,
∴∠OEB=75°,
∵∠AEB=45°,
∴∠2=∠OEB﹣∠AEB=30°,
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明步行從家去火車站,走到6分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計(jì)步行時間提前了3分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,那么從家到火車站路程是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,對稱軸是直線,與軸交于點(diǎn).若點(diǎn),同時從點(diǎn)出發(fā),都以每秒個單位長度的速度分別沿,邊運(yùn)動.
(1)求該二次函數(shù)的解析式及點(diǎn)的坐標(biāo),與軸的另一個交點(diǎn)的坐標(biāo).
(2)當(dāng),運(yùn)動到秒時,沿翻折,點(diǎn)恰好落在軸上點(diǎn)處,請判定此時四邊形的形狀,并求出點(diǎn)坐標(biāo).
(3)當(dāng)點(diǎn)運(yùn)動到對稱軸與的交點(diǎn)時,點(diǎn)往回運(yùn)動,同時點(diǎn)則倍的速度繼續(xù)沿運(yùn)動,在整個運(yùn)動過程中,以點(diǎn),,為頂點(diǎn)的三角形面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.
(4)在段的拋物線上有一點(diǎn)到線段的距離最大,請求出這個最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)求證這個二次函數(shù)的圖像一定與x軸有交點(diǎn);
(2)若這個二次函數(shù)有最大值0,求m的值;
(3)我們定義:若二次函數(shù)的圖像與x軸正半軸的兩個交點(diǎn)的橫坐標(biāo),滿足2<<3,則稱這個二次函數(shù)與x軸有兩個“黃金交點(diǎn)”.如果二次函數(shù)與x軸有兩個“黃金交點(diǎn)”,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生物學(xué)上研究表明:不同濃度的生長素對植物的生長速度影響不同,在一定范圍內(nèi),生長素的濃度對植物的生長速度有促進(jìn)作用,相反,在某些濃度范圍,生長速度會變緩慢,甚至阻礙植物生長(阻礙即植物不生長,甚至枯萎).小林同學(xué)在了解到這一信息后,決定研究生長素濃度與茶樹生長速度的關(guān)系,設(shè)生長素濃度為x克/升,生長速度為y毫米/天,當(dāng)x超過4時,茶樹的生長速度y與生長素x濃度滿足關(guān)系式:.實(shí)驗(yàn)數(shù)據(jù)如下表,當(dāng)生長速度為0時,實(shí)驗(yàn)結(jié)束.
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 2 | 4 | 6 | 8 | 10 | 9 | 7 | 4 | 0 |
(1)如圖,建立平面直角坐標(biāo)系xOy,描出表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)圖象;
(2)根據(jù)上述表格,求出整個實(shí)驗(yàn)過程中y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)結(jié)合畫出的函數(shù)圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)若直線y=kx+3與上述函數(shù)圖象有2個交點(diǎn),則k的取值范圍是: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,要在某東西走向的A、B兩地之間修一條筆直的公路,在公路起點(diǎn)A處測得某農(nóng)戶C在A的北偏東68°方向上.在公路終點(diǎn)B處測得該農(nóng)戶c在點(diǎn)B的北偏西45°方向上.已知A、B兩地相距2400米.
(1)求農(nóng)戶c到公路B的距離;(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
(2)現(xiàn)在由于任務(wù)緊急,要使該修路工程比原計(jì)劃提前4天完成,需將該工程原定的工作效率提高20%,求原計(jì)劃該工程隊(duì)毎天修路多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解九年級學(xué)生新冠疫情防控期間每天居家體育活動的時間(單位:),在網(wǎng)上隨機(jī)調(diào)查了該校九年級部分學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖1和圖2.請根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的初中學(xué)生人數(shù)為________,圖①中的值為________;
(2)這組數(shù)據(jù)的平均數(shù)是________,眾數(shù)是________,中位數(shù)是________;
(3)根據(jù)統(tǒng)計(jì)的這組每天居家體育活動時間的樣本數(shù)據(jù),估計(jì)該校500名九年級學(xué)生居家期間每天體育活動時間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,AE=FE時,求的長(結(jié)果保留π);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點(diǎn),與軸的負(fù)半軸交于點(diǎn),且.
(1)求一次函數(shù)和的表達(dá)式;
(2)在軸上是否存在一點(diǎn),使得是以為腰的等腰三角形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)反比例函數(shù)的圖象記為曲線,將向右平移3個單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com