【題目】如圖,在平面直角坐標(biāo)系中,已知A10,0),B10,6),BCy軸,垂足為C,點(diǎn)D在線(xiàn)段BC上,且AD=AO

1)試說(shuō)明:DO平分∠CDA;

2)求點(diǎn)D的坐標(biāo).

【答案】(1)詳見(jiàn)解析;(2)D(2,6).

【解析】

(1)由題意AD=AO,可得∠ADO=AOD,AOBC可得∠CDO=AOD,則∠CDO=ADO,DO平分∠CDA.

(2)由坐標(biāo)可得AD=AO=10,AB=6,BD=8,即可求出D點(diǎn)坐標(biāo).

(1)AD=AO,

∴∠ADO=AOD,

BCy,

BCAO,

∴∠CDO=AOD,

∴∠CDO=ADO,

DO平分∠CDA.

(2)A10,0),B10,6,

AD=AO=10,AB=6,

BD=.

D坐標(biāo)為:(2,6).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線(xiàn)平行移動(dòng)線(xiàn)段的長(zhǎng)度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點(diǎn)為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問(wèn)題:

在圖中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線(xiàn)段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)yax2bxc經(jīng)過(guò)A(-1,0),B(2,0),C(0,2)三點(diǎn).

(1)求這條拋物線(xiàn)表示的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是第一象限內(nèi)此拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是銳角三角形內(nèi)一點(diǎn),內(nèi)不同于的另一點(diǎn);分別由、逆時(shí)針旋轉(zhuǎn)而得,旋轉(zhuǎn)角都為,則下列結(jié)論:

、、在一條直線(xiàn)上.

其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OCAOB的角平分線(xiàn),POC上一點(diǎn),PDOAPEOB,垂足分別為DEFOC上另一點(diǎn),連接DF,EF.求證:DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長(zhǎng)AB,BC,CA至點(diǎn)A1,B1,C1,使A1BAB,B1CBC,C1ACA,順次連結(jié)A1B1,C1,得到△A1B1C1.第二次操作:分別延長(zhǎng)A1B1,B1C1,C1A1至點(diǎn)A2,B2C2,使A2B1A1B1,B2C1B1C1,C2A1C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過(guò)2013,最少經(jīng)過(guò)_____次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC,且ABC60°,DABC內(nèi)一點(diǎn) ,且DADB,EABC外一點(diǎn),BEAB,且EBDCBD,連DE,CE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC10cm,BC6cm,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線(xiàn)段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線(xiàn)段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒,BPDCQP是否全等?請(qǐng)說(shuō)明理由;

2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使BPDCQP全等?

查看答案和解析>>

同步練習(xí)冊(cè)答案