如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動.在運動過程中,點B到原點的最大距離是(    )

A.6      B.2      C.2           D.2+2
D.

試題分析:作AC的中點D,連接OD、DB,
∵OB≤OD+BD,
∴當O、D、B三點共線時OB取得最大值,
∵D是AC中點,
∴OD=AC=2,
∵BD=,OD=AC=2,
∴點B到原點O的最大距離為2+2
故選D.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中, 拋物線+與直線交于A, B兩點,點A在點B的左側(cè).
(1)如圖1,當時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線+ 軸交于C,D兩點(點C在點D的左側(cè)).在直線上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時的值;若不存在,請說明理由.

圖1                                   圖2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線與x軸,y軸分別相交于點B,點C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸是直線
(1)求A點的坐標及該拋物線的函數(shù)表達式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側(cè)的拋物線上是否存在點Q,使得以點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)的圖象經(jīng)過(,0)和(,0)兩點.
(1)求此二次函數(shù)的表達式.
(2)直接寫出當<x<1時,y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)圖象交點的橫坐標分別是a和b,其中a<2<b,試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出一個正方形.你能否在該矩形中裁剪出一個面積最大的正方形,最大面積是多少?說明理由;
(2)請用矩形紙片ABCD剪拼成一個面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點都在網(wǎng)格的格點上).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設△PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當頂點F或G恰好落在y軸上時,直接寫出對應的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結(jié)論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點.
(1)求b的值;
(2)判斷關(guān)于x的一元二次方程2x2+bx+1=0是否有實數(shù)根,若有,求出它的實數(shù)根;若沒有,請說明理由;
(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值.

查看答案和解析>>

同步練習冊答案