【題目】新型冠狀肺炎給人類帶來了災(zāi)難.口罩是抗擊新冠肺炎的重要戰(zhàn)略物資,國家在必要時(shí)進(jìn)行價(jià)格限制,以保持價(jià)格穩(wěn)定.某公司生產(chǎn)的口罩售價(jià)與天數(shù)的函數(shù)關(guān)系如圖所示(曲線部分是以軸為對(duì)稱軸的拋物線一部分).

1)求口罩銷售價(jià)格(元)與天數(shù)(天)之間的函數(shù)關(guān)系式;

2)若這種口罩每只成本(元)與天數(shù)之間的關(guān)系為:.那么這種口罩在第幾天售出后單只利潤最大?最大利潤為多少?

【答案】1;(2)當(dāng)時(shí),

【解析】

1時(shí)為二次函數(shù)圖象,利用待定系數(shù)法求出即可, 時(shí),y為常數(shù)20;

2)利潤為銷售價(jià)格減去成本,分段討論然后找出最大值即可.

1時(shí),由于圖象是以軸為對(duì)稱軸的拋物線一部分,

則設(shè)

將(0,1),(205)代入,

解得,,

時(shí),,

2)①當(dāng)時(shí)

當(dāng)時(shí),

②當(dāng)時(shí)

當(dāng)時(shí),

③當(dāng)時(shí)

綜上所述,當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系內(nèi)任意一點(diǎn)P,過P點(diǎn)作軸于點(diǎn)M,軸于點(diǎn)N,連接,則稱的長度為點(diǎn)P的垂點(diǎn)距離,記為h.特別地,點(diǎn)P與原點(diǎn)重合時(shí),垂點(diǎn)距離為0

1)點(diǎn)的垂點(diǎn)距離分別為________,___________,____________;

2)點(diǎn)P在以為圓心,半徑為3上運(yùn)動(dòng),求出點(diǎn)P的垂點(diǎn)距離h的取值范圍;

3)點(diǎn)T為直線位于第二象限內(nèi)的一點(diǎn),對(duì)于點(diǎn)T的垂點(diǎn)距離h的每個(gè)值有且僅有一個(gè)點(diǎn)T與之對(duì)應(yīng),求點(diǎn)T的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社會(huì)團(tuán)體準(zhǔn)備購進(jìn)甲、乙兩種防護(hù)服捐給一線抗疫人員,經(jīng)了解,購進(jìn)5件甲種防護(hù)服和4件乙種防護(hù)服需要2萬元,購進(jìn)10件甲種防護(hù)服和3件乙種防護(hù)服需要3萬元.

1)甲種防護(hù)服和乙種防護(hù)服每件各多少元?

2)實(shí)際購買時(shí),發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購買甲種防護(hù)服超過20件時(shí),超過的部分按原價(jià)的8折付款,乙種防護(hù)服沒有優(yōu)惠;方案二:兩種防護(hù)服都按原價(jià)的9折付款,該社會(huì)團(tuán)體決定購買件甲種防護(hù)服和30件乙種防護(hù)服.

①求兩種方案的費(fèi)用與件數(shù)的函數(shù)解析式;

②請(qǐng)你幫該社會(huì)團(tuán)體決定選擇哪種方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),將點(diǎn)向右平移2個(gè)單位得到點(diǎn)

1)求點(diǎn)坐標(biāo);

2)如果一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),且點(diǎn)的橫坐標(biāo)為1

時(shí),求的值;

②當(dāng)時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形先向右平移1個(gè)單位長度,再向上平移1個(gè)單位長度,得到正方形,形成了中間深色的正方形及四周淺色的邊框,已知正方形的面積為16,則四周淺色邊框的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ay軸正半軸上,ACx軸,點(diǎn)B、C的橫坐標(biāo)都是3,且BC2,點(diǎn)DAC上,若反比例函數(shù)yx0)的圖象經(jīng)過點(diǎn)BD.且AOBC32

1)求點(diǎn)D坐標(biāo);

2)將△AOD沿著OD折疊,設(shè)頂點(diǎn)A的對(duì)稱點(diǎn)為A′,試判斷點(diǎn)A′是否恰好落在直線BD上,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016寧夏)某種水彩筆,在購買時(shí),若同時(shí)額外購買筆芯,每個(gè)優(yōu)惠價(jià)為3元,使用期間,若備用筆芯不足時(shí)需另外購買,每個(gè)5元.現(xiàn)要對(duì)在購買水彩筆時(shí)應(yīng)同時(shí)購買幾個(gè)筆芯作出選擇,為此收集了這種水彩筆在使用期內(nèi)需要更換筆芯個(gè)數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計(jì)圖:

設(shè)x表示水彩筆在使用期內(nèi)需要更換的筆芯個(gè)數(shù),y表示每支水彩筆在購買筆芯上所需要的費(fèi)用(單位:元),n表示購買水彩筆的同時(shí)購買的筆芯個(gè)數(shù).

(1)若n=9,求yx的函數(shù)關(guān)系式;

(2)若要使這30支水彩筆更換筆芯的個(gè)數(shù)不大于同時(shí)購買筆芯的個(gè)數(shù)的頻率不小于0.5,確定n的最小值;

(3)假設(shè)這30支筆在購買時(shí),每支筆同時(shí)購買9個(gè)筆芯,或每支筆同時(shí)購買10個(gè)筆芯,分別計(jì)算這30支筆在購買筆芯所需費(fèi)用的平均數(shù),以費(fèi)用最省作為選擇依據(jù),判斷購買一支水彩筆的同時(shí)應(yīng)購買9個(gè)還是10個(gè)筆芯.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點(diǎn),點(diǎn)上(點(diǎn)不與重合),過點(diǎn)的直線交,交射線于點(diǎn),設(shè),

1)如圖1,若為等邊三角形,點(diǎn)重合,,求證:

2)如圖2,若點(diǎn)重合,求證:;

3)如圖3,若,,直接寫出的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案