【題目】請認(rèn)真觀察如下圖形:
當(dāng)時,長方形分為2個直角三角形;
當(dāng)時,長方形分為8個直角三角形;
當(dāng)時,長方形分為18個直角三角形;
……
依此規(guī)律,第個圖形中,長方形被分成______個小直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,點A,B,C均在格點上.
(1)請值接寫出點A,B,C的坐標(biāo).
(2)若平移線段AB,使B移動到C的位置,請在圖中畫出A移動后的位置D,依次連接B,C,D,A,并求出四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,菱形中,,、分別是邊和上的點,且.
(1)求證:
(2)如圖2,在延長線上,且,求證:
(3)如圖3,在(2)的條件下,,,是的中點,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生到商場參加社會實踐活動,他們參與了某種品牌運動鞋的銷售工作,已知該運動鞋每雙的進(jìn)價為120元,為尋求合適的銷售價格進(jìn)行了4天的試銷,試銷情況如表所示:
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請求出這個函數(shù)關(guān)系式;
(2)若商場計劃每天的銷售利潤為3000元,則其單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小何按市場價格元/千克在收購了千克蘑菇存放入冷庫中,請根據(jù)小何提供的預(yù)測信息(如圖)幫小何解決以下問題:
()若小何想將這批蘑菇存放天后一次性出售,則天后這批蘑菇的銷售單價為__________元,這批蘑菇的銷售量是__________千克.
()小何將這批蘑菇存放多少天后,一次性出售所得的銷售總金額為元?
()將這批蘑菇存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用水平線和豎直線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點,叫格點,以格點為頂點的多邊形叫格點多邊形.設(shè)格點多邊形的面積為,它各邊上格點的個數(shù)之和為.
探究一:圖中①—④的格點多邊形,其內(nèi)部都只有一個格點,它們的面積與各邊上格點的個數(shù)之和的對應(yīng)關(guān)系如表:
多邊形的序號 | ① | ② | ③ | ④ | … |
多邊形的面積 | 2 | 2.5 | 3 | 4 | … |
各邊上格點的個數(shù)和 | 4 | 5 | 6 | 8 | … |
與之間的關(guān)系式為:________.
探究二:圖中⑤—⑧的格點多邊形內(nèi)部都只有2個格點,請你先完善下表格的空格部分(即分別計算出對應(yīng)格點多邊形的面積):
多邊形的序號 | ⑤ | ⑥ | ⑦ | ⑧ | … |
多邊形的面積 | … | ||||
各邊上格點的個數(shù)和 | 4 | 5 | 6 | 8 | … |
與之間的關(guān)系式為:________.
猜想:當(dāng)格點多邊形內(nèi)部有且只有個格點時,與之間的關(guān)系式為:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:作點A關(guān)于直線l的對稱點A'.
已知:直線l和l外一點A.
求作:點A關(guān)于l的對稱點A'.
作法:①在l上任取一點P,以點P為圓心,PA長為半徑作孤,交l于點B;②以點B為圓心,AB長為半徑作弧,交弧AB于點A'. 點A'就是所求作的對稱點.
由步驟①,得________
由步驟②,得________
將橫線上的內(nèi)容填寫完整,并說明點A與A'關(guān)于直線l對稱的理由________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線l與拋物線y=mx2+nx相交于A(1,3 ),B(4,0)兩點.
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;
(3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com