【題目】已知:在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,HBF的中點.

1)如圖,若AB1,DG2,求BH的長;

2)如圖,連接AH、GH,求證:AHGHAHGH

【答案】1;(2)詳見解析.

【解析】

1)先根據(jù)勾股定理得出AB,DG,進而求出BF,即可得出結(jié)論;

2)先判斷△ABH≌△MFH,進而判斷出△ADG≌△MFG.即可判斷出△AGM為等腰直角三角形,即可得出結(jié)論;

1)解:正方形中ABCD和正方形DEFG,

∴△ABD△GDF為等腰直角三角形.

∵AB1,DG2,

由勾股定理得BD,DF

∵B、D、F共線,

∴BF

∵HBF的中點,

∴BHBF

2)如圖1,延長AHEF于點M,連接AG,GM,

正方形中ABCD和正方形DEFGBD、F共線,

∴AB∥EF

∴∠ABH∠MFH

∵BHFH,∠AHB∠MHF

∴△ABH≌△MFH

∴AHMH,ABMF

∵ABAD

∴ADMF

∵DGFG,∠ADG∠MFG90°,

∴△ADG≌△MFG

∴∠AGD∠MGF,AGMG

∵∠DGM+∠MGF90°,

∴∠AGD+∠DGM90°

∴△AGM為等腰直角三角形.

∵AHMH,

∴AHGHAH⊥GH

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

材料一:

早在2011925日,北京故宮博物院就開始嘗試網(wǎng)絡(luò)預(yù)售門票,2011年全年網(wǎng)絡(luò)售票僅占1.68%.2012年至2014年,全年網(wǎng)絡(luò)售票占比都在2%左右.2015年全年網(wǎng)絡(luò)售票占17.33%,2016年全年網(wǎng)絡(luò)售票占比增長至41.14%.20178月實現(xiàn)網(wǎng)絡(luò)售票占比77%.2017102日,首次實現(xiàn)全部網(wǎng)上售票.與此同時,網(wǎng)絡(luò)購票也采用了人性化的服務(wù)方式,為沒有線上支付能力的觀眾提供代客下單服務(wù).實現(xiàn)全網(wǎng)絡(luò)售票措施后,在北京故宮博物院的精細化管理下,觀眾可以更自主地安排自己的行程計劃,獲得更美好的文化空間和參觀體驗.

材料二:

以下是某同學(xué)根據(jù)網(wǎng)上搜集的數(shù)據(jù)制作的2013-2017年度中國國家博物館參觀人數(shù)及年增長率統(tǒng)計表.

年度

2013

2014

2015

2016

2017

參觀人數(shù)(人次)

7 450 000

7 630 000

7 290 000

7 550 000

8 060 000

年增長率(%)

38.7

2.4

-4.5

3.6

6.8

他還注意到了如下的一則新聞:201838日,中國國家博物館官方微博發(fā)文,宣布取消紙質(zhì)門票,觀眾持身份證預(yù)約即可參觀. 國博正在建設(shè)智慧國家博物館,同時館方工作人員擔心的是:雖然有故宮免(紙質(zhì))票的經(jīng)驗在前,但對于國博來說這項工作仍有新的挑戰(zhàn).參觀故宮需要觀眾網(wǎng)上付費購買門票,他遵守預(yù)約的程度是不一樣的.但(國博)免費就有可能約了不來,擠占資源,所以難度其實不一樣.” 盡管如此,國博仍將積極采取技術(shù)和服務(wù)升級,希望帶給觀眾一個更完美的體驗方式.

根據(jù)以上信息解決下列問題:

(1)補全以下兩個統(tǒng)計圖;

(2)請你預(yù)估2018年中國國家博物館的參觀人數(shù),并說明你的預(yù)估理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,的頂點、的坐標分別為、,,函數(shù)的圖象經(jīng)過點,則的值為(

A.2B.4C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具專柜從太原市小商品批發(fā)市場購進一批膠帶,每個進價0.5.調(diào)查發(fā)現(xiàn),當銷售價為0.8元時,每月可售出500個;如果售價每降低0.05元,那么平均每月可多售出200個.

1)當降價0.2元時,平均每月銷售膠帶______個;

2)攤主要想平均每月贏利180元,且盡可能讓利與顧客,應(yīng)該如何定價?

3)在(2)的條件下,每個膠帶的利潤率是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在探究尺規(guī)三等分角這個數(shù)學(xué)命題中,利用了如圖,該圖中,四邊形ABCD是矩形,線段AC繞點A逆時針旋轉(zhuǎn)得到線段AF,CFBA的延長線交于點E,若∠E=∠FAE,∠ACB21°,則∠ECD的度數(shù)是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點和點,對稱軸分別交拋物線和軸于點和點,以為底邊向上作等腰

1______;______(用含的代數(shù)式表示);

2)如圖1,當時,連接,求的值;

3)點是拋物線段上任意一點,連接,延長交對稱軸于點,如圖2,若,三點在一條直線上,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是拋物線對稱軸上的一點,連接OA,以A為旋轉(zhuǎn)中心將AO逆時針旋轉(zhuǎn)90°得到AO′,當O′恰好落在拋物線上時,點A的坐標為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020222日深圳地鐵10號線華南城站試運行,預(yù)計今年6月正式開通.在地鐵的建設(shè)中,某段軌道的鋪設(shè)若由甲乙兩工程隊合做,12天可以完成,共需工程費用27720元;已知乙隊單獨完成這項工程所需時間是甲隊單獨完成這項工程所需時間的1.5倍,且甲隊每天的工程費用比乙隊多250元.

1)求甲、乙兩隊單獨完成這項工程各需多少天?

2)若工程管理部門決定從這兩個隊中選一個隊單獨完成此項工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個工程隊?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,點P沿線段AB從點A向點B運動,設(shè)AP=x.

(1)求AD的長;

(2)點P在運動過程中,是否存在以A、P、D為頂點的三角形與以P、C、B為頂點的三角形相似?若存在,求出x的值;若不存在,請說明理由;

(3)設(shè)△ADP與△PCB的外接圓的面積分別為S1、S2,若S=S1+S2,求S的最小值.

查看答案和解析>>

同步練習(xí)冊答案