【題目】如圖,在△ABC中,∠B=90°,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1㎝/秒的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2㎝/秒的速度移動(dòng).()
(1)如果ts秒時(shí),PQ//AC,請計(jì)算t的值.
(2)如果ts秒時(shí),△PBQ的面積等于S㎝2,用含t的代數(shù)式表示S.
(3)PQ能否平分△ABC的周長?如果能,請計(jì)算出t值,不能,說明理由.
【答案】(1);(2)S=();(3)PQ不能平分△ABC的周長,理由見解析.
【解析】
(1)由題意得, PB=6-t,BQ=2t,根據(jù)PQ∥AC,得到,代入相應(yīng)的代數(shù)式計(jì)算求出t的值;
(2)由題意得, PB=6-t,BQ=2t,根據(jù)三角形面積的計(jì)算公式,S△PBQ=BP×BQ,列出表達(dá)式即可;
(3)由題意根據(jù)勾股定理求得AC=10cm,利用PB+BQ是△ABC周長的一半建立方程解答即可.
解:(1)由題意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴當(dāng)t=時(shí),PQ∥AC;
(2)由題意得, PB=6-t,BQ=2t,
∵∠B=90°,
∴ BP×BQ=×2t×(6-t)= ,
即ts秒時(shí),S=();
(3)PQ不能平分△ABC的周長.
理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,
設(shè)ts后直線PQ將△ABC周長分成相等的兩部分,則AP=tcm,BQ=2tcm,BP=(6-t)cm,由題意得
2t+6-t=×(6+8+10)
解得:t=6>4,
所以不存在直線PQ將△ABC周長分成相等的兩部分,
即PQ不能平分△ABC的周長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E、F分別為AB、BC、AC的中點(diǎn),則下列結(jié)論:①△ADF≌△FEC;②四邊形ADEF為菱形;③。其中正確的結(jié)論是____________.(填寫所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于點(diǎn)D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中,是假命題的個(gè)數(shù)有( )
①如果,那么. ② 兩條直線被第三條直線所截,同位角相等
③面積相等的兩個(gè)三角形全等 ④ 三角形的一個(gè)外角等于不相鄰的兩個(gè)內(nèi)角的和.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次課外活動(dòng)中,甲、乙兩位同學(xué)測量公園中孔子塑像的高度,他們分別在A,B兩處用高度為1.5m的測角儀測得塑像頂部C的仰角分別為30°,45°,兩人間的水平距離AB為10m,求塑像的高度CF.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式:①y=2x2-3xz+5;②y=3-2x+5x2;③y=+2x-3;④y=ax2+bx+c;⑤y=(2x-3)(3x-2)-6x2;⑥y=(m2+1)x2+3x-4(m為常數(shù));⑦y=m2x2+4x-3(m為常數(shù))是二次函數(shù)的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 的周長為16.點(diǎn)是邊的中點(diǎn),=2,過點(diǎn)作的垂線,是上任意一點(diǎn),則 的周長最小值為( )
A.12B.14C.16D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)D是AB的中點(diǎn),連結(jié)CD,過點(diǎn)B作BG⊥CE,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF.給出以下五個(gè)結(jié)論:
①;②;③點(diǎn)F是GE的中點(diǎn);④;⑤,其中正確結(jié)論的個(gè)數(shù)是( )
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知線段AD平分∠BAC交BC于D,∠B=62°,∠C=58°.
(1)用尺規(guī)作出線段AD,并求∠ADB的度數(shù);
(2)若DE⊥AC于點(diǎn)E,把圖形補(bǔ)充完整并求∠ADE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com