【題目】如圖,已知在ABC中,CDAB于點D,BD=9,BC=15,AC=20.

(1)求CD的長;

(2)求AB的長;

(3)判斷ABC的形狀.

【答案】(1)CD長為12;(2)AB的長為25;(3)ABC是直角三角形

【解析】解: (1)在BCD中,CDAB,BD2CD2BC2CD2BC2BD2=152-92=144.CD=12.

(2)在ACD中,CDAB,CD2AD2AC2AD2AC2CD2=202-122=256.AD=16.ABADBD=16+9=25.

(3)BC2AC2=152+202=625,AB2=252=625,AB2BC2AC2ABC是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C、E分別在直線ABDF上,小華想知道∠ACE和∠DEC是否互補,但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結CF,再找出CF的中點O,然后連結EO并延長EO和直線AB相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EOBO,因此他得出結論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BCEF.小華的想法對嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點B,E分別在AC,DF上,BD,CE均與AF相交,∠1=2,C=D,求證:∠A=F.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,菱形ABCD,分別延長AB,CB到點F,E,使得BF=BA,BE=BC,連接AE,EF,F(xiàn)C,CA.

(1)求證:四邊形AEFC為矩形;

(2)連接DEAB于點O,如果DEAB,AB=4,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,按下列步驟作圖:以點B為圓心,適當長為半徑畫弧,與AB,BC分別交于點D,E;②分別以D,E為圓心,大于 DE的長為半徑畫弧,兩弧交于點P;③作射線BPAC于點F;④過點FFG⊥AB于點G.下列結論正確的是( 。

A. CF=FG B. AF=AG C. AF=CF D. AG=FG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點.ABC的邊BCx軸上,A、C兩點的坐標分別為A0m)、Cn0),B-50),且,點PB出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設點P運動時間為t秒.

1)求A、C兩點的坐標;

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當P在線段BO上運動時,在y軸上是否存在點Q,使POQAOC全等?若存在,請求出t的值并直接寫出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,點P從點A開始沿AB邊向點B1/秒的速度移動,同時點Q從點B開始沿BC邊向點C2/秒的速度移動.(

1)如果ts秒時,PQ//AC,請計算t的值.

2)如果ts秒時,△PBQ的面積等于S2,用含t的代數(shù)式表示S

3PQ能否平分△ABC的周長?如果能,請計算出t值,不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,AC上的中線BD把三角形的周長分為24㎝和30㎝的兩個部分,求三角形的三邊長.

查看答案和解析>>

同步練習冊答案