【題目】(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD.求證:EF=BE+FD;
(2)如圖,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?
(3)如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.
【答案】(1)證明見(jiàn)解析;(2)(2)(1)中的結(jié)論EF=BE+FD仍然成立;(3)結(jié)論EF=BE+FD不成立,應(yīng)當(dāng)是EF=BE﹣FD,證明見(jiàn)解析.
【解析】試題分析:(1)可通過(guò)構(gòu)建全等三角形來(lái)實(shí)現(xiàn)線段間的轉(zhuǎn)換.延長(zhǎng)EB到G,使BG=DF,連接AG.目的就是要證明三角形AGE和三角形AEF全等將EF轉(zhuǎn)換成GE,那么這樣EF=BE+DF了,于是證明兩組三角形全等就是解題的關(guān)鍵.三角形ABE和AEF中,只有一條公共邊AE,我們就要通過(guò)其他的全等三角形來(lái)實(shí)現(xiàn),在三角形ABG和AFD中,已知了一組直角,BG=DF,AB=AD,因此兩三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=∠BAD.由此就構(gòu)成了三角形ABE和AEF全等的所有條件(SAS),那么就能得出EF=GE了.
(2)思路和作輔助線的方法與(1)完全一樣,只不過(guò)證明三角形ABG和ADF全等中,證明∠ABG=∠ADF時(shí),用到的等角的補(bǔ)角相等,其他的都一樣.因此與(1)的結(jié)果完全一樣.
(3)按照(1)的思路,我們應(yīng)該通過(guò)全等三角形來(lái)實(shí)現(xiàn)相等線段的轉(zhuǎn)換.就應(yīng)該在BE上截取BG,使BG=DF,連接AG.根據(jù)(1)的證法,我們可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.所以(1)的結(jié)論在(3)的條件下是不成立的.
(1)延長(zhǎng)EB到G,使BG=DF,連接AG.
∵∠ABG=∠ABC=∠D=90°,AB=AD,
∴△ABG≌△ADF.
∴AG=AF,∠1=∠2.
∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,
∴△AEG≌△AEF.
∴EG=EF.
∵EG=BE+BG.
∴EF=BE+FD
(2)(1)中的結(jié)論EF=BE+FD仍然成立.
(3)結(jié)論EF=BE+FD不成立,應(yīng)當(dāng)是EF=BE﹣FD.
證明:在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.
∴∠BAG=∠DAF,AG=AF.
∴∠BAG+∠EAD=∠DAF+∠EAD
=∠EAF=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.
∴EG=EF
∵EG=BE﹣BG
∴EF=BE﹣FD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過(guò)平移得到拋物線y=x2﹣2x,其對(duì)稱軸與兩拋物線所圍成的陰影部分的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過(guò)OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了__s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式由左邊到右邊的變形中,屬于因式分解的是( )
A.(a﹣2)(a+2)=a2﹣4
B.8x2y=8×x2y
C.m2﹣1+n2=(m+1)(m﹣1)+n2
D.x2+2x﹣3=(x﹣1)(x+3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某球形流感病毒的直徑約為0.000000085m,0.000000085用科學(xué)記數(shù)法表為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象的對(duì)稱軸是直線,則下列理論:①, ②,③,④,⑤當(dāng)時(shí), 隨的增大而減小,其中正確的是( ).
A. ①②③ B. ②③④ C. ③④⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由四個(gè)小正方形拼接成的L形圖案,按下列 要求畫(huà)出圖形。
(1)請(qǐng)你用兩種方法分別在L形圖案中添畫(huà)一個(gè)小正方形,使它成為軸對(duì)稱圖形;
(2)請(qǐng)你在L形圖案中添畫(huà)一個(gè)小正方形,使它成為中心對(duì)稱圖形。
(3)請(qǐng)你在L}形圖案中移動(dòng)一個(gè)小正方形,使它成為既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三條不同的直線a、b、c在同一平面內(nèi),下列四條命題:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命題的是 . (填寫(xiě)所有真命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com