【題目】如圖,在中,,AD是中線,EAD的中點,過點ABE的延長線于F,連接CF

求證:;

如果,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

【答案】(1)見解析;(2)四邊形ADCF是正方形,理由見解析

【解析】

試題(1)由EAD的中點,AFBC,易證得AEF≌△DEB,即可得AD=BD,又由在ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;(2)由AF=BD=DC,AFBC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得ADBC,AD=DC,繼而可得四邊形ADCF是正方形.

試題解析:,

的中點,

,

中,

,

,

∵在中,,是中線,

,

)四邊形是正方形,

,

∴四邊形是平行四邊形,

,是中線,

,

,

∴四邊形是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,AB是切點,點C是劣弧AB上的一點,若∠P=40°,則∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D 的中點.

(1)求證:AB=BC;

(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知B港口位于A觀測點北偏東45°方向,且其到A觀測點正北風(fēng)向的距離BM的長為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達(dá)C處,測得C處位于A觀測點北偏東75°方向,則此時貨輪與A觀測點之間的距離AC的長為( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個質(zhì)地均勻的正方體骰子的六個面上分別刻有16的點數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點數(shù)記為,擲第二次,將朝上一面的點數(shù)記為,則點()落在直線上的概率為:

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某游泳館推出了兩種收費方式.

方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30元.

方式二:顧客不購買會員卡,每次游泳付費40元.

設(shè)小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).

1)請分別寫出y1y2x之間的函數(shù)表達(dá)式.

2)若小亮一年內(nèi)來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?

3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A(-5,1),B(-1,1),C(-4,3).

1)若A1B1C1ABC關(guān)于y軸對稱,點A,B,C的對應(yīng)點分別為A1,B1,C1,請畫出A1B1C1并寫出A1,B1,C1的坐標(biāo);

2)若點P為平面內(nèi)不與C重合的一點,PABABC全等,請寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學(xué)們進行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個不同的度數(shù)時,請你探索的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案