【題目】為進一步推廣“陽光體育”大課間活動,某中學對已開設的A實心球,B立定跳遠,C跑步,D跳繩四種活動項目的學生喜歡情況,進行調(diào)查,隨機抽取了部分學生,并將調(diào)查結果繪制成圖1、圖2的統(tǒng)計圖,請結合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學生?
(2)請計算本項調(diào)查中喜歡“跑步”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖,請計算本項調(diào)查中喜歡“跑步”部分所對應的圓心角的度數(shù);
(4)如果全校共1200名同學,請你估算喜歡“跑步”的學生人數(shù).
【答案】(1)150名;(2)答案見解析;(3)144°;(4)480名
【解析】
(1)根據(jù)喜歡A項目的人數(shù)是15,所占的百分比是10%即可求得調(diào)查的總人數(shù);
(2)利用總人數(shù)減去其它項的人數(shù)即可求得喜歡“跑步”的學生人數(shù),然后根據(jù)百分比的意義求得百分比;
(3)利用360°乘以對應的百分比即可求解;
(4)利用總人數(shù)乘以對應的百分比即可.
(1)共調(diào)查了15÷10%=150名學生;
(2)本項調(diào)查中喜歡“跑步”的學生人數(shù)是;150﹣15﹣45﹣30=60(人),
所占百分比是:100%=40%,
;
(3)“跑步”部分所對應的圓心角的度數(shù)是:360°×40%=144°;
(4)全校喜歡“跑步”的學生人數(shù)約是:1200×40%=480.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的正方形和正三角形拼接而成,第①個圖案有4個三角形和1個正方形,第②個圖案有7個三角形和2個正方形,第③個圖案有10個三角形和3個正方形,…依此規(guī)律,第n個圖案有 ____________個三角形(用含n的代數(shù)式表示);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為積極響應“弘揚傳統(tǒng)文化”的號召,某學校倡導全校1200名學生進行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取部分學生調(diào)查“一周詩詞誦背數(shù)量”,根調(diào)查結果繪制成的統(tǒng)計圖(部分)如圖所示.
大賽結束后一個月,再次抽查這部分學生“一周詩詞誦背數(shù)量”,繪制成統(tǒng)計表
一周詩詞誦背數(shù)量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人數(shù) | 10 | 10 | 15 | 40 | 25 | 20 |
請根據(jù)調(diào)查的信息
(1)活動啟動之初學生“一周詩詞誦背數(shù)量”的中位數(shù)為 ;
(2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);
(3)選擇適當?shù)慕y(tǒng)計量,從兩個不同的角度分析兩次調(diào)查的相關數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】依次剪6張正方形紙片拼成如圖示意的圖形,圖形中正方形①的面積為1,正方形②的面積為.
(1)請用含的式子直接寫出正方形⑤的面積;
(2)若正方形⑥與正方形③的面積相等,求正方形④和正方形⑤的面積比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE︰BC=2︰3,AC與DE相交于點F,若S△EFC=8,則S△CFD=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=∶DE=4∶1,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c(bc≠0).
(1)若該拋物線的頂點坐標為(c,b),求其解析式;
(2)點A(m,n),B(m+1,n),C(m+6,n)在拋物線y=x2+bx+c上,求△ABC的面積;
(3)在(2)的條件下,拋物線y=x2+bx+c的圖象與x軸交于D(x1,0),E(x2,0)(x1<x2)兩點,且0<x1+x2<3,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠BAC=60°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側作菱形ADEF,使∠DAF=60°,連接CF.
(1)觀察猜想:如圖1,當點D在線段BC上時,①AB與CF的位置關系為: ;
②BC,CD,CF之間的數(shù)量關系為: .
(2)數(shù)學思考:如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸:如圖3,當點D在線段BC的延長線上時,設AD與CF相交于點G,若已知AB=4,CD=AB,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 要了解某公司生產(chǎn)的100萬只燈泡的使用壽命,可以采用抽樣調(diào)查的方法
B. 4位同學的數(shù)學期末成績分別為100、95、105、110,則這四位同學數(shù)學期末成績的中位數(shù)為100
C. 甲乙兩人各自跳遠10次,若他們跳遠成績的平均數(shù)相同,甲乙跳遠成績的方差分別為0.51和0.62,則乙的表現(xiàn)較甲更穩(wěn)定
D. 某次抽獎活動中,中獎的概率為表示每抽獎50次就有一次中獎
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com