【題目】請從以下四個一元二次方程中任選三個,并用適當的方法解這三個方程.
(1)x2﹣x﹣1=0;
(2)(y﹣2)2﹣12=0;
(3)(1+m)2=m+1;
(4)t2﹣4t=5.
【答案】(1)x1=,x2= ;(2)y1=,y2=;(3)m1=﹣1,m2=0;(4)t1=5,t2=﹣1.
【解析】試題分析:(1)利用公式法解方程;
(2)先移項得到(y-2)2=12,然后利用直接開平方法解方程;
(3)先移項得到(m+1)2-(m+1)=0,然后利用因式分解法求解;
(4)先移項得到t2-4t-5=0,然后利用因式分解法求解.
試題解析:解:(1)△=(﹣1)2﹣4×1×(﹣1)=5,x=,∴x1= ,x2= ;
(2)(y﹣2)2=12,y﹣2=±,∴y1=,y2=;
(3)(m+1)2﹣(m+1)=0,∴(m+1)(m+1﹣1)=0,∴m+1=0或m+1﹣1=0,∴m1=﹣1,m2=0;
(4)t2﹣4t﹣5=0,∴(t﹣5)(t+1)=0,∴t﹣5=0或t+1=0,∴t1=5,t2=﹣1.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖像與軸交于、兩點,與軸交于點,點是拋物線頂點,點是直線下方的拋物線上一動點.
()這個二次函數的表達式為____________.
()設直線的解析式為,則不等式的解集為___________.
()連結、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.
()當四邊形的面積最大時,求出此時點的坐標和四邊形的最大面積.
()若把條件“點是直線下方的拋物線上一動點.”改為“點是拋物線上的任一動點”,其它條件不變,當以、、、為頂點的四邊形為梯形時,直接寫出點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A. 12B. 24C. 12D. 16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是我國古代數學家楊輝最早發(fā)現的,稱為“楊輝三角”.它的發(fā)現比西方要早五百年左右,由此可見我國古代數學的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數字正好對應了(a+b)n(n為非負整數)的展開式中a按次數從大到小排列的項的系數。
例如,展開式中的系數1、2、1恰好對應圖中第三行的數字;
再如,展開式中的系數1、3、3、1恰好對應圖中第四行的數字。
請認真觀察此圖,寫出(a+b)4的展開式,(a+b)4=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數的解析式;
(2)根據圖象直接寫出的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規(guī)作圖:某學校正在進行校園環(huán)境的改造工程設計,準備在校內一塊四邊形花壇內栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點P),到花壇的兩邊AB、BC的距離相等,并且點P到點A、D的距離也相等.請用尺規(guī)作圖作出栽種桂花樹的位置點P(不寫作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,AD=11.直角尺的直角頂點P在AD上滑動時(點P與A,D不重合),一直角邊始終經過點C,另一直角邊與AB交于點E.
(1)△CDP與△PAE相似嗎?如果相似,請寫出證明過程;
(2)是否存在這樣的點P,使△CDP的周長等于△PAE周長的2倍?若存在,求DP的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當a=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當a為多少度時,△AOD是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,Rt△ABC的直角邊AB在x軸上,∠ABC=90°.點A的坐標為(1,0),點C的坐標為(3,4),M是BC邊的中點,函數()的圖象經過點M.
(1)求k的值;
(2)將△ABC繞某個點旋轉180°后得到△DEF(點A,B,C的對應點分別為點D,E,F),且EF在y軸上,點D在函數()的圖象上,求直線DF的表達式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com