【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按,,,四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:級:8分—10分,級:7分—7.9分,級:6分—6.9分,級:1分—5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,對應的扇形的圓心角是_______度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數(shù)會落在_______等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到級的學生有多少人?
【答案】(1)117;(2)畫圖見解析;(3)B;(4)30人.
【解析】(1)根據(jù)B的認識和所占的百分比,求出總人數(shù)是:18÷45%=40,求得
則C級的人數(shù),進而求得
(2)根據(jù)(1)求出的C級的人數(shù),即可作出條形統(tǒng)計圖;
(2)根據(jù)扇形統(tǒng)計圖,用1減去A、B、C三個級別的百分比,即可求出D級的學生人數(shù)占全班學生人數(shù)的百分比;
(3)一共有40名同學,中間兩個數(shù)是第20和21,都落在B級,所抽取學生的足球運球測試成績的中位數(shù)會落在B等級;
(4)用總人數(shù)乘以A級所占的百分比即可求解.
【解答】(1)總人數(shù)是:18÷45%=40,
則C級的人數(shù)是:404185=13.
對應的扇形的圓心角是:
故答案為:117;
(2)如圖
(3)B;
(4)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為坐標原點,的頂點、的坐標分別為、,頂點在軸的正半軸上,的高交線段于點,且.
(1)求線段的長;
(2)動點從點出發(fā)沿線段以每秒個單位長度的速度向終點運動,動點從點出發(fā)沿射線以每秒個單位長度的速度運動,、兩點同時出發(fā),且點到達點處時、兩點同時停止運動,設點的運動時間為秒,的面積為,請用含的式子表示,直接寫出相應的的取值范圍;
(3)在(2)的條件下,點是直線上的一點且,是否存在值,使以點、、為頂點的三角形與以點、、為頂點的三角形全等?若存在,請求出符合條件的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5元/噸收費,超出10噸的部分按2元/噸收費,則某戶居民一個月用水8噸,則應繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應繳水費:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 6 | 7 | 12 | 15 |
水費(元) | 12 | 14 | 28 | 37 |
(1)該市規(guī)定用水量為 噸,規(guī)定用量內(nèi)的收費標準是 元/噸,超過部分的收費標準是 元/噸.
(2)若小明家五月份用水20噸,則應繳水費 元.
(3)若小明家六月份應繳水費46元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,AB=3,BC=4.將△BCD沿對角線BD翻折得到△BED,BE交AD于點O.
(1)判斷△BOD的形狀,并證明;(2)直接寫出線段OD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點P是AB下方的半圓上不與點A,B重合的一個動點,點C為AP中點,延長CO交⊙O于點D,連接AD,過點D作⊙O的切線交PB的廷長線于點E,連CE交AB于點F,連接DF.
(1)求證:△DAC≌△ECP;
(2)填空:
①四邊形ACED是何種特殊的四邊形?
②在點P運動過程中,線段DF、AP的數(shù)量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.
(1)如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;
(2)如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元,經(jīng)洽談后,甲店每買一副球拍贈一盒乒乓球,乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5盒).
問:(1)設購買乒乓球x盒時,在甲家購買所需多少元?在乙家購買所需多少元?(用含x的代數(shù)式表示,并化簡)
(2)當購買乒乓球多少盒時,兩種優(yōu)惠辦法付款一樣?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M、N分別是AC、BC的中點.
(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由;
(4)你能用一句簡潔的話,描述你發(fā)現(xiàn)的結論嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冰封文教店用1200元購進了甲、乙兩種鋼筆,已知甲種鋼筆進價為每支12元,乙種鋼筆進價為每支10元。在銷售時甲種鋼筆售價為每支15元,乙種鋼筆售價為每支12元,全部售完后共獲利270元。
(1)求冰封文教店購進甲、乙兩種鋼筆各多少支?
(2)冰封文教店以原價再次購進甲、乙兩種鋼筆,且購進甲種鋼筆的數(shù)量不變,而購進乙種鋼筆的數(shù)量是第一次的2倍,乙種鋼筆按原售價銷售,而甲種鋼筆降價銷售,當兩種鋼筆銷售完畢時,要使再次購進的鋼筆獲利不少于340元,甲種鋼筆每支最低售價應為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com