【題目】學完三角形的高后,小明對三角形與高線做了如下研究:如圖,中邊上的-點,過點、分別作、、,垂足分別為點、,由的面積之和等于的面積,有等量關系式:.像這種利用同一平面圖形的兩種面積計算途徑可以得出相關線段的數(shù)量關系式,從而用于解決數(shù)學問題的方法稱為等積法,下面請嘗試用這種方法解決下列問題.

(1) (2)

(1)如圖(1), 矩形中,,點上一點,過點,,垂足分別為點、,求的值;

(2)如圖(2),在中,角平分線相交于點,過點分別作,垂足分別為點,若,求四邊形的周長.

【答案】(1);(24

【解析】

1)由矩形的性質可得∠ABC=90°,AO=COBO=DO,由“等積法”可求解;

2)由“等積法”可求OM=ON=1,通過證明四邊形AMON是正方形,即可求解.

解:(1)如圖,連接,

則由矩形性質有:

解得:

2)連接,過點,垂足為點,

的角平分線,、,垂足分別為點、,

,

中,

,則

解得:

四邊形是矩形

矩形是正方形

正方形的周長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水8噸以內(包括8噸)和用水8噸以上兩種收費標準(收費標準:每噸水的價格),某用戶每月應交水費y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.

1)求出自來水公司在這兩個用水范圍內的收費標準;

2)若芳芳家6月份共交水費28.1元,請寫出用水量超過8噸時應交水費y(元)與用水量x(噸)之間的函數(shù)關系,并求出芳芳家6月份的用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50/分的速度沿同一路線行走.設甲乙兩人相距s(米),甲行走的時間為t(分),s關于t的函數(shù)圖象的一部分如圖所示.下列結論正確的個數(shù)是(  )

1t5時,s150;(2t35時,s450;(3)甲的速度是30/分;(4t12.5時,s0

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,連接AC,過點C作直線CD⊥AB于點D,EAB上一點,直線CE與⊙O交于點F,連結AF,與直線CD交于點G

求證:(1∠ACD=∠F; (2AC2=AG·AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有公共端點的兩條線段,組成一條折線,若該折線上一點把這條折線分成相等的兩部分,我們把這個點叫做這條折線的“折中點”.已知點是折線的“折中點”,點為線段的中點,,則線段的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點DDCOA于點C,DCAB相交于點E.

(1)求證:DB=DE;

(2)若∠BDE=70°,求∠AOB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的頂點Ay軸正半軸上,頂點Cx軸正半軸上,拋物線a<0)的頂點為D,且經(jīng)過點A、B.若△ABD為等腰直角三角形,則a的值為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,在平面直角坐標系中,A(3,4),B(0,2).

(1)OAB繞O點旋轉180°得到OA1B1,請畫出OA1B1,并寫出A1,B1的坐標;

(2)判斷以A,B,A1,B1為頂點的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年深圳市創(chuàng)建文明城市期間,某區(qū)教育局為了了解全區(qū)中學生對課外體育運動項目的喜歡程度,隨機抽取了某校八年級部分學生進行問卷調查(每人限選一種體育運動項目).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:

1)這次活動一共調查了 名學生;

2)在扇形統(tǒng)計圖中,跳繩所在扇形圓心角等于 度;

3)補全條形統(tǒng)計圖;

4)若該校有學生2000人, 請你估計該校喜歡足球的學生約有 .

查看答案和解析>>

同步練習冊答案