【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,將△ABC向右平移5個(gè)單位長度,再向下平移3個(gè)單位長度得到△A1B1C1.(圖中每個(gè)小方格邊長均為1個(gè)單位長度)
(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點(diǎn)的坐標(biāo).
A1______,B1______,C1______.
(3)在x軸上找到一點(diǎn)M,當(dāng)AM+A1M取最小值時(shí),M點(diǎn)的坐標(biāo)是______.
【答案】(1)答案見解析;(2)A1(3,1),B1(0,-1),C1(1,2);(3)(2,0).
【解析】
(1)、(2)利用點(diǎn)平移的坐標(biāo)變換規(guī)律寫出A1、B1、C1的坐標(biāo),然后描點(diǎn)即可;
(3)作A點(diǎn)關(guān)于x軸的對稱點(diǎn)A′,連接A′A1交x軸于M,如圖,從而得到M點(diǎn)的坐標(biāo).
解:(1)如圖,△A1B1C1為所作;
(2)A1(3,1),B1(0,-1),C1(1,2);
(3)作A點(diǎn)關(guān)于x軸的對稱點(diǎn)A′,連接A′A1交x軸于M,如圖,
M點(diǎn)的坐標(biāo)為(2,0).
故答案為(3,1),(0,-1),(1,2);(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B,且滿足
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)點(diǎn)C在線段AB上,m、n滿足n-m=5,點(diǎn)D在y軸負(fù)半軸上,連CD交x軸的負(fù)半軸于點(diǎn)M,且S△MBC=S△MOD,求點(diǎn)D的坐標(biāo);
(3)平移直線AB,交x軸正半軸于E,交y軸于F,P為直線EF上第三象限內(nèi)的點(diǎn),過P作PG⊥x軸于G,若S△PAB=20,且GE=12,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個(gè)邊長為b的正方形(如圖),然后將剩余部分拼成一個(gè)長方形(如圖).
(1)上述操作能驗(yàn)證的等式是 ;(請選擇正確的一個(gè))
A.a2-2ab+b2=(a-b)2 B.a2-b2=(a+b)(a-b) C.a2+ab=a(a+b)
(2)應(yīng)用你從(1)選出的等式,完成下列各題:
①已知x2-4y2=12,x+2y=4,求x-2y的值.
②計(jì)算:(1-)(1-)(1-)…(1-)(1-).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形的頂點(diǎn)、處各有一只蝸牛,他們同時(shí)出發(fā),以相同的速度分別由向,由向爬行,經(jīng)過分鐘后,它們分別爬行到了、處,設(shè)在爬行過程中與的交點(diǎn)為.
(1)當(dāng)點(diǎn)、不是、的中點(diǎn)時(shí),圖中由全等三角形嗎?如果沒有,請說明理由;如過有,請找出所有全等三角形,并選擇其中一對進(jìn)行證明
(2)問蝸牛在爬行過程中與所成的大小有無變化?請證明你的結(jié)論(提示:等邊三角形的三個(gè) 都相等,每個(gè)角等于)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC與△DEF中,下列各組條件,不能判定這兩個(gè)三角形全等的是( 。
A. AB=DE,∠B=∠E,∠C=∠FB. AB=EF,∠A=∠E,∠B=∠FC. AC=DF,BC=DE,∠C=∠D D. AC=DE,∠B=∠E,∠A=∠F
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系中已知點(diǎn)P(1,2),在x軸上找一點(diǎn)A,使△AOP為等腰三角形,這樣的點(diǎn)A共有____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知FG⊥AB,CD⊥AB,垂足分別為G,D,∠1=∠2,
求證:∠CED+∠ACB=180°,
請你將小明的證明過程補(bǔ)充完整.
證明:∵FG⊥AB,CD⊥AB,垂足分別為G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已證)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=8,E為AD邊上一點(diǎn),沿CE將△CDE對折,使點(diǎn)D正好落在AB邊上F處,求tan∠AFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧掛上物體后會(huì)伸長,若一彈簧長度(cm)與所掛物體質(zhì)量(kg)之間的關(guān)系如下表:
物體的質(zhì)量(kg) | 0 | 1 | 2 | 3 | 4 | 5 |
彈簧的長度(cm) | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 |
則下列說法錯(cuò)誤的是( )
A.彈簧長度隨物體的質(zhì)量的變化而變化,物體的質(zhì)量是自變量,彈簧的長度是因變量
B.如果物體的質(zhì)量為x kg,那么彈簧的長度y cm可以表示為y=12+0.5x
C.在彈簧能承受的范圍內(nèi),當(dāng)物體的質(zhì)量為7kg時(shí),彈簧的長度為16cm
D.在沒掛物體時(shí),彈簧的長度為12cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com