【題目】已知:在平行四邊形ABCD中,點O是邊AD的中點,連接CO并延長交BA延長線于點E,連接ED、AC.
(1)如圖1,求證:四邊形AEDC是平行四邊形;
(2)如圖2,若四邊形AEDC是矩形,請?zhí)骄俊?/span>COD與∠B的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明.
【答案】(1)見解析;(2)∠COD=180°﹣2∠B,理由見解析
【解析】
(1)由AAS證明△AEO≌△DCO,得出AE=CD,即可得出結(jié)論;
(2)由平行四邊形的性質(zhì)得出∠B=∠ADC,根據(jù)四邊形AEDC是矩形得到AO=EO=CO=DO,求出∠ADC=∠OCD,根據(jù)三角形的內(nèi)角和∠ADC+∠OCD+∠COD=180°,即可得出∠COD與∠B的數(shù)量關(guān)系.
證明:(1)∵四邊形ABCD是平行四邊形
∴AB∥CD
∴∠BEC=∠DCE
∵點O是邊AD的中點
∴AO=DO,且∠BEC=∠DCE,∠AOE=∠DOC
∴△AEO≌△DCO(AAS)
∴AE=CD
∵AE∥DC,AE=CD
∴四邊形AEDC是平行四邊形
(2)∠COD=180°﹣2∠B
理由如下:
∵四邊形ABCD是平行四邊形
∴∠B=∠ADC
∵四邊形AEDC是矩形
∴AO=EO=CO=DO
∴∠ADC=∠OCD
∵∠ADC+∠OCD+∠COD=180°
∴∠COD=180°﹣2∠ADC=180°﹣2∠B
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖1,若AB∥CD,點P在AB、CD內(nèi)部,∠B=50°,∠D=30°,求∠BPD.
(2)如圖2,將點P移到AB、CD外部,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?(不需證明)
(3)如圖3,寫出∠BPD﹑∠B﹑∠D﹑∠BQD之間的數(shù)量關(guān)系?請證明你的結(jié)論.
(4)如圖4,求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P(﹣3a﹣4,2+a),解答下列各題:
(1)若點P在x軸上,則點P的坐標為P ;
(2)若Q(5,8),且PQ∥y軸,則點P的坐標為P ;
(3)若點P在第二象限,且它到x軸、y軸的距離相等,求a2018+2018的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a= ,b= ;
(2)試著把7+4化成一個完全平方式.
(3)若a是216的立方根,b是16的平方根,試計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=2,AO=BO,P是直線CO上的一個動點,∠AOC=60°,當△PAB是以BP為直角邊的直角三角形時,AP的長為( )
A. ,1,2 B. ,,2 C. ,,1 D. ,2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學現(xiàn)有在校學生2150人,為了解該校學生的課余活動情況,采取隨機抽樣的方法從閱讀、運動、娛樂、其它四個方面調(diào)查了若干名學生,并將調(diào)查的結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)本次調(diào)查共抽取了多少名學生?
(2)通過計算補全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數(shù);
(3)請你估計該中學在課余時間參加閱讀和其它活動的學生一共有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,A地在B、C兩地之間.甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿這條公路勻速相向行駛,甲勻速行駛1小時到達A地后繼續(xù)以相同的速度向C處行駛,到達C后停止,乙勻速行駛1.2小時后到達A地并停止運動,甲、乙兩車離A地的距離y1、y2(千米)與行駛時間x(時)的函數(shù)關(guān)系如圖所示.
(1)BC的距離為 km
⑵求線段MN的函數(shù)表達式;
⑶求點P的坐標,并說明點P的實際意義;
⑷出發(fā)多長時間后,甲、乙相距60km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com