【題目】某校有學生3600人,在“文明我先行”的活動中,開設了“法律、禮儀、環(huán)保、感恩、互助”五門校本課程,規(guī)定每位學生必須且只能選一門,為了解學生的報名意向,學校隨機調查了一些學生,并制成統(tǒng)計表和統(tǒng)計圖:
課程類別 | 頻數(shù) | 頻率 |
法律 | 36 | 0.09 |
禮儀 | 55 | 0.1375 |
環(huán)保 | m | a |
感恩 | 130 | 0.325 |
互助 | 49 | 0.1225 |
合計 | n | 1.00 |
(1)在這次調查活動中,學校采取的調查方式是 (填寫“普查”或“抽樣調查”)a= ,m= ,n= .
(2)請補全條形統(tǒng)計圖,如果要畫一個“校本課程報名意向扇形統(tǒng)計圖”,那么“環(huán)保”類校本課程所對應的扇形圓心角應為 度;
(3)請估算該校3600名學生中選擇“感恩”校本課程的學生約有多少人?
【答案】(1)抽樣調查;0.325;130;400;(2)117°;(3)1170人
【解析】
(1)根據(jù)題意,學校隨機調查了一些學生,而非全體學生,所以調查方式是抽樣調查;根據(jù)頻率的定義即可求出a,根據(jù)頻數(shù)的定義,即可求出m和n;
(2)根據(jù)(1)中得出的數(shù)據(jù),即可畫出統(tǒng)計圖;扇形統(tǒng)計圖,根據(jù)其頻率即可求出圓心角;
(3)根據(jù)選擇“感恩”校本課程的學生的頻率,即可求出.
解:(1)本次調查活動中,學校采取的調查方式是抽樣調查;
a=1﹣(0.09+0.1375+0.325+0.1225)=0.325; m=36÷0.09×0.325=130;n=36÷0.09=400;
(2)如圖所示:
根據(jù)題意得: 0.325×360°=117°;
(3)3600×0.325=1170人.
答:該校3600名學生中選擇“感恩”校本課程的學生約有1170人.
故答案為:(1)抽樣調查;0.325;130;400;(2)117.
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的圖形和直線,給出如下定義:為圖形上任意一點,為直線上任意一點,如果,兩點間的距離有最小值,那么稱這個最小值為圖形和直線之間的“確定距離”,記作(,直線).
已知,.
(1)求(點,直線);
(2)的圓心為,半徑為1,若(,直線),直接寫出的取值范圍;
(3)記函數(shù),(,)的圖象為圖形.若(,直線),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=OB,點D是上一動點,點E是CD中點,連接BD分別交OC,OE于點F,G.
(1)求∠DGE的度數(shù);
(2)若=,求的值;
(3)記△CFB,△DGO的面積分別為S1,S2,若=k,求的值.(用含k的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,CB=2,CA=4,線段AD由線段AB繞點A逆時針方向旋轉90°得到,△EFG由△ABC沿CB方向平移得到,當直線EF恰好經(jīng)過點D時,CG的長等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3(b是常數(shù))經(jīng)過點A(﹣1,0),(1)求拋物線的解析式_____.(2)P(m,t)為拋物線上的一個動點,P關于原點的對稱點為P′,當點P′落在第二象限內(nèi),P′A2取得最小值時,求m的值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)市場香蕉的價格如下表
購買香蕉數(shù)(千克) | 不超過20千克 | 20千克以上但不超過40千克 | 40千克以上 |
每千克的價格 | 6元 | 5元 | 4元 |
張強兩次共購買香蕉50千克,已知第二次購買的數(shù)量多于第一次購買的數(shù)量,共付出264元,請問張強第一次,第二次分別購買香蕉多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,點P從點B出發(fā)沿折線BA﹣AD﹣DC勻速運動,同時,點Q從點B出發(fā)沿折線BC﹣CD勻速運動,點P與點Q的速度相同,當二者相遇時,運動停止,設點P運動的路程為x,△BPQ的面積為y,則y關于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).
(1)當時,
①在圖1中依題意畫出圖形,并求(用含的式子表示);
②探究線段,,之間的數(shù)量關系,并加以證明;
(2)當時,直接寫出線段,,之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點M的坐標為,點N的坐標為,且,,我們規(guī)定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.
(1)已知點A的坐標為,
①若點B的坐標為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標;
②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達式.
(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com