【題目】某公司購進(jìn)一種商品的成本為30元/kg,經(jīng)市場調(diào)研發(fā)現(xiàn),這種商品在未來90天的銷售單價(jià)p(元/kg)與時(shí)間t(天)之間的相關(guān)信息如圖,銷售量y(kg)與時(shí)間t(天)之間滿足一次函數(shù)關(guān)系,且對應(yīng)數(shù)據(jù)如表,設(shè)第t天銷售利潤為w(元)

時(shí)間t(天)

10

30

每天的銷售量

y(kg)

180

140

(1)分別求出售單價(jià)p(元/kg)、銷售量y(kg)與時(shí)間t(天)之間的函數(shù)關(guān)系式;

(2)問:銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?并求出最大利潤;

【答案】(1)y=﹣2t+200,;(2)第45天利潤最大,最大利潤為6050 元.

【解析】

(1)設(shè)y=k1t+b,利用待定系數(shù)法即可得解,當(dāng)0<t<50時(shí),設(shè)p=k2t+40,利用待定系數(shù)法即可得解,當(dāng)50≤t≤90時(shí),p=90;

(2)利用銷量×每千克利潤=總利潤,得到w關(guān)于t的函數(shù)關(guān)系式,然后根據(jù)函數(shù)性質(zhì)求得最大值即可.

(1)設(shè)y=k1t+b,把t=10,y=180;t=30,y=140代入得到:

,

解得:

∴y=﹣2t+200;

當(dāng)0<t<50時(shí),設(shè)p=k2t+40,由圖象得B(50,90),

∴50k+40=90,

∴k2=1,

∴p=t+40,

當(dāng)50≤t≤90時(shí),p=90;

(2)w=(﹣2t+200)(t+40﹣30)=﹣2t2+180t+2000=﹣2(t﹣45)2+6050,

所以當(dāng)t=45時(shí)w最大值為6050元,

w=(﹣2t+120)(90﹣30)=﹣120t+12000,

因?yàn)?/span>﹣120<0,

∴wx增大而減小

所以t=50時(shí),w最大值=6000,

綜上所述,第45天利潤最大,最大利潤為6050 元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°BC=CD=3

1)求∠ADC的度數(shù);

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個不同的實(shí)根;其中正確的結(jié)論個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖在等邊三角形ABC中,線段AMBC邊上的中線,動點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)填空:∠CAM   

2)若點(diǎn)D在線段AM上時(shí),求證:△ADC≌△BEC

3)當(dāng)動點(diǎn)D在直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O

當(dāng)點(diǎn)D在線段AM上時(shí),求∠AOB的度數(shù);

當(dāng)動點(diǎn)D在直線AM上時(shí),試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時(shí)后貨船在小島的正東方向,求貨船的航行速度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1A1BC中,∠B20°,A1BCB;在邊A1B上任取一點(diǎn)D,延長CA1A2,使A1A2A1D,得到第2A1A2D;在邊A2D上任取一點(diǎn)E,延長A1A2A3,使A2A3A2E,得到第3A2A3E,按此做法繼續(xù)下去,第2019個等腰三角形的底角度數(shù)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△P1AC,則 P1P 的長等于( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個動點(diǎn),過點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(2,0),B(6,2),C(6,6),

反比例函數(shù)y1=(x0)的圖象過點(diǎn)D,點(diǎn)P是一次函數(shù)y2=kx+3﹣3k(k0)的圖象與該反比例函數(shù)圖象的一個公共點(diǎn).

(1)若一次函數(shù)y2=kx+3﹣3k的圖象必經(jīng)過點(diǎn)E,則E點(diǎn)坐標(biāo)為______

(2)對于一次函數(shù)y2=kx+3﹣3k(k0),當(dāng)yx的增大而增大時(shí),點(diǎn)P橫坐標(biāo)a的取值范圍是______

查看答案和解析>>

同步練習(xí)冊答案