如圖1,在平面直角坐標(biāo)系中,點A、C分別在y軸和x軸上,AB∥x軸,sinC=,點P從O點出發(fā),沿邊OA、AB、BC勻速運動,點Q從 點C出發(fā),以1cm/s的速度沿邊 CO勻速運動。點P與點Q同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設(shè)點 P 運動的時間為t (s),△CPQ 的面積為 S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段 OE、線段 EF與曲線段FG 給出.
(1)點P的運動速度為 cm/s, 點B、C的坐標(biāo)分別為 , ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時,△CPQ 的面積是四邊形OABC的面積的?
【解析】
試題分析:(1)根據(jù)圖2知,點Q運動2秒時△CPQ的面積為4cm2,由三角形面積公式可求出點P的運動速度;當(dāng)Q運動4.5秒時,△CPQ的面積達到最大,此時OA+AB=9,從而求出點B與點A坐標(biāo),由sinC=可求出點C的坐標(biāo);
(2)分段求出函數(shù)解析式;
(3)先求出四邊形OABC的面積,由△CPQ 的面積是四邊形OABC的面積的,即可求出t的值.
試題解析:(1)2,(5,4),(8,0);
(2)i)當(dāng)0≤t≤2時,s=t2;
ii) 當(dāng)2≤t≤4.5時,s=2t;
iii) 當(dāng)4.5≤t≤9時,;
(3)t=4 或t=5.
考點:動態(tài)幾何問題.
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級二模數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)中自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市錫北片九年級4月中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當(dāng)頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市錫北片九年級4月中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題
若二次根式有意義,則x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市錫北片九年級4月中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題
2014年3月,我省確診4例感染“H7N9禽流感”病例,H7N9是一種新型禽流感,其病毒顆粒呈多形性,其中球形病毒的最大直徑為0.000 000 12米,這一直徑用科學(xué)記數(shù)法表示為( )
A.1.2×10-9米 B.1.2×10-8米 C.1.2×10-7米 D.12×10-8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級4月高效課堂調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題
星期五晚上,小明和他的媽媽一起看《我是歌手》,歌手演唱完后要評選出名次,在已公布四到七名后,還有張杰、韓磊、鄧紫棋三位選手沒有公布名次.
(1)求鄧紫棋獲第一名的概率;
(2)如果小明和媽媽一起競猜第一名,那么兩人中一個人猜中另一個人卻沒猜中的概率是多少?(請用“樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市九年級4月高效課堂調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,將正方形ABCD沿BE對折,使點A落在對角線BD上的A′處,連接A′C,則∠BA′C= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市新區(qū)九年級第一次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
小明遇到這樣一個問題:“如圖1,在邊長為a(a>2)的正方形ABCD各邊上分別截取AE=BF=CG=DH=1,當(dāng)∠AFQ=∠BGM=∠CHN=∠DEP=45°時,求正方形MNPQ的面積.”
分析時,小明發(fā)現(xiàn),分別延長QE,MF,NG,PH交FA,GB,HC,ED的延長線于 點R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四個全等的等腰直角三角形(如圖2)
請回答:
(1)若將上述四個等腰直角三角形拼成一個正方形(無縫隙不重疊),則這個正方形的邊長為_______
(2)求正方形MNPQ的面積.
(3)參考小明思 考問題的方法,解決問題:
如圖3,在等邊△ABC各邊上分別截取AD=BE=CF,再分別過點D,E,F(xiàn)作BC,AC,AB的垂線,得到等邊△RPQ.若S△RPQ=,則AD的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市崇安區(qū)九年級下學(xué)期期中統(tǒng)考(一模)數(shù)學(xué)試卷(解析版) 題型:填空題
PM2.5是指大氣中直徑小于或等于0.0000025m的顆粒物. 將0.0000025用科學(xué)記數(shù)法可表示為2.5×10n,則n= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com