【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.
(1)求證:△ABM ∽△EMA;
(2)若AB=2,BM=1,求DE的長.
科目:初中數學 來源: 題型:
【題目】如圖.利用一面墻(墻的長度不限),用20m的籬笆圍成一個矩形場地ABCD.設矩形與墻垂直的一邊AB=xm,矩形的面積為Sm2.
(1)用含x的式子表示S;
(2)若面積S=48m2,求AB的長;
(3)能圍成S=60m2的矩形嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O,請用無刻度的直尺完成下列作圖.
(1)如圖①,四邊形ABCD是⊙O的內接四邊形,且AB=AD,畫出∠BCD的角平分線;
(2)如圖②,AB和AD是⊙O的切線,切點分別是B、D,點C在⊙O上,畫出∠BCD的角平分線.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解題時,最容易想到的方法未必是最簡單的,你可以再想一想,盡量優(yōu)化解法.
例題呈現
關于x的方程a(x+m)2+b=0的解是x1=1,x2=-2(a、m、b均為常數,a≠0),則方程a(x+m+2)2+b=0的解是 .
解法探討
(1)小明的思路如圖所示,請你按照他的思路解決這個問題;
小明的思路
第1步 把1、-2代入到第1個方程中求出m的值;
第2步 把m的值代入到第1個方程中求出的值;
第3步 解第2個方程.
(2)小紅仔細觀察兩個方程,她把第2個方程a(x+m+2)2+b=0中的“x+2”看作第1個方程中的“x”,則“x+2”的值為 ,從而更簡單地解決了問題.
策略運用
(3)小明和小紅認真思考后發(fā)現,利用方程結構的特點,無需計算“根的判別式”就能輕松解決以下問題,請用他們說的方法完成解答.
已知方程 (a2-2b2)x2+(2b2-2c2)x+2c2-a2=0有兩個相等的實數根,其中a、b、c是△ABC三邊的長,判斷△ABC的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,OA是⊙O的半徑,以OA為直徑的⊙C與⊙O的弦AB相交于點D,連結OD并延長交⊙O于點E,連結AE.
(1)求證:AD=DB.
(2)若AO=10,DE=4,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的邊OA在x軸上,OC在y軸上,且B的坐標為(8,6),動點D從B點出發(fā),以1個單位長度每秒的速度向C點運動t秒(D不與B,C重合),連接AD,將△ABD沿AD翻折至△AB'D(B'在矩形的內部或邊上),連接DB',DB'所在直線與AC交于點F,與OA所在直線交于點E.
(1)①當t= 秒,B'與F重合;
②求線段CB'的取值范圍;
(2)①求EB'的長度(用含t的代數式表示),并求出t的取值范圍;
②當t為何值時,△AEF是以AE為底的等腰三角形?并求出此時EC的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市銷售一種成本為40元千克的商品,若按50元千克銷售,一個月可售出500千克,現打算漲價銷售,據市場調查,漲價x元時,月銷售量為m千克,m是x的一次函數,部分數據如下表:
觀察表中數據,直接寫出m與x的函數關系式:_______________:當漲價5元時,計算可得月銷售利潤是___________元;
當售價定多少元時,會獲得月銷售最大利潤,求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+2x﹣3.
(1)把函數配成y=a(x﹣h)2+k的形式;
(2)求函數與x軸交點坐標;
(3)用五點法畫函數圖象
x | … | … | |||||
y | … | … |
(4)當y>0時,則x的取值范圍為_____.
(5)當﹣3<x<0時,則y的取值范圍為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.
(1)該項綠化工程原計劃每天完成多少米2?
(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com