【題目】結(jié)合二次函數(shù)的圖象圖回答:
當(dāng)________時(shí),當(dāng)________時(shí),當(dāng)________時(shí),.
【答案】或 或.
【解析】
(1)直接根據(jù)函數(shù)的圖象與x軸的交點(diǎn)分別為(-1,0),(0,3)可得出結(jié)論;
(2)根據(jù)當(dāng)-1<x<3時(shí),函數(shù)圖象在x軸的上方可得出結(jié)論;
(3)根據(jù)當(dāng)x<-1或x>3時(shí),函數(shù)圖象在x軸下方可得出結(jié)論.
(1)∵函數(shù)的圖象與x軸的交點(diǎn)分別為(1,0),(3,0),
∴當(dāng)x=1或x=3時(shí),y=0.
(2)∵由函數(shù)圖象可知,當(dāng)1<x<3時(shí),函數(shù)圖象在x軸的上方,
∴當(dāng)1<x<3時(shí),y>0.
(3)∵由函數(shù)圖象可知,當(dāng)x<1或x>3時(shí)函數(shù)圖象在x軸下方,
∴當(dāng)x<1或x>3時(shí),y<0.
故答案為:1或3;1<x<3;x<1或x>3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE是圓O的直徑,點(diǎn)B在AE的延長線上,點(diǎn)D在圓O上,且AC⊥DC, AD平分∠EAC
(1)求證:BC是圓O的切線。
(2)若BE=8,BD=12,求圓O的半徑,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在八年級(jí)開展環(huán)保知識(shí)問卷調(diào)查活動(dòng),問卷一共10道題,每題10分,八年級(jí)(三)班的問卷得分情況統(tǒng)計(jì)圖如下圖所示:
(1)扇形統(tǒng)計(jì)圖中,a的值為 ________.
(2)根據(jù)以上統(tǒng)計(jì)圖中的信息,求這問卷得分的眾數(shù)和中位數(shù)分別是多少分?
(3)已知該校八年級(jí)共有學(xué)生600人,請估計(jì)問卷得分在80分以上(含80分)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC(如圖),
(1)求作:作△ABC的內(nèi)切圓⊙I.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法,不要求證明).
(2)在題(1)已經(jīng)作好的圖中,若∠BAC=88°,求∠BIC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長線于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)相似三角形的一對對應(yīng)邊長分別是和
已知他們的周長相差,求這兩個(gè)三角形的周長.
已知它們的面積相差,求這兩個(gè)三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
如圖1,和均為等邊三角形,點(diǎn),,在同一條直線上,連接;
探究發(fā)現(xiàn)
(1)善思組發(fā)現(xiàn):,請你幫他們寫出推理過程;
(2)鉆研組受善思組的啟發(fā),求出了度數(shù),請直接寫出等于______度;
(3)奮進(jìn)組在前面兩組的基礎(chǔ)上又探索出了與的位置關(guān)系為______(請直接寫出結(jié)果);
拓展探究
(4)如圖2,和均為等腰直角三角形,,點(diǎn),,在同一條直線上,為中邊上的高,連接,試探究,,之間有怎樣的數(shù)量關(guān)系.
創(chuàng)新組類比善思組的發(fā)現(xiàn),很快證出,進(jìn)而得出.請你寫出,,之間的數(shù)量關(guān)系并幫創(chuàng)新組完成后續(xù)的證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①所示,若AB∥CD,點(diǎn)P在AB,CD外部,則有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠P+∠D,得∠P=∠B-∠D.將點(diǎn)P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?并證明你的結(jié)論;
(2)在圖②中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一塊三角形區(qū)域ABC中,∠C=90°,邊AC=8m,BC=6m,現(xiàn)要在△ABC內(nèi)建造一個(gè)矩形水池DEFG,如圖的設(shè)計(jì)方案是使DE在AB上.
(1)求△ABC中AB邊上的高h;
(2)設(shè)DG=x,當(dāng)x取何值時(shí),水池DEFG的面積(S)最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com