【題目】如圖,點P是圓O直徑CA延長線上的一點,PB切圓O于點B,點D是圓上的一點,連接AB,AD,BD,CD,PB=BC.
(1)求證:OP=2OC;
(2)若OC=5,sin∠DCA=,求BD的長.
【答案】(1)見解析;(2)4+3
【解析】
(1)連接OB,由切線的性質和等腰三角形的性質得出得出∠P=30°,再由直角三角形的性質即可得出結論;
(2)作AH⊥BD于H,由圓周角定理和三角函數(shù)得出AC=10,CD=8,AD=6,由直角三角形的性質得出AB=AC=5,由三角函數(shù)得出AH=3,BH=4,求出DH=AH=3,即可得出結果.
(1)證明:如圖1,連接OB,
∵PB切圓O于點B,
∴∠OBP=90°,
∴∠P+∠POB=90°,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠POB=∠OBC+∠OCB=2∠OCB,
∵PB=BC,
∴∠P=∠OCB,
∴∠P+∠POB=∠P+2∠OCB=3∠P=90°,
∴∠P=30°,
∴OP=2OB=2OC;
(2)解:如圖2,作AH⊥BD于H,
∵AC為⊙O的直徑,
∴∠ADC=90°,∠ABC=90°
∵OC=5,sin∠DCA=,
∴AC=10,CD=8,AD=6,
∵∠OCB=30°,
∴AB=AC=5,
∵sin∠ABD=sin∠DCA=,
∴AH=3,BH=4,
∵∠ADH=∠OCB=30°,
∴DH=AH=3,
∴BD=BH+DH=4+3.
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關于y軸對稱的圖形△A1B1C1,并直接寫出C1點坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點坐標;
(3)如果點D(a,b)在線段AB上,請直接寫出經過(2)的變化后D的對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.
(1)與y軸的交點坐標是 ,頂點坐標是 .
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)結合圖象回答:當﹣2<x<2時,函數(shù)值y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,,D是BC的中點.
小明對圖①進行了如下探究:在線段AD上任取一點P,連接PB.將線段PB繞點P按逆時針方向旋轉,點B的對應點是點E,連接BE,得到.小明發(fā)現(xiàn),隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側,也可能在直線AD上,還可能在直線AD的右側.請你幫助小明繼續(xù)探究,并解答下列問題:
(1)當點E在直線AD上時,如圖②所示.
① ;②連接CE,直線CE與直線AB的位置關系是 .
(2)請在圖③中畫出,使點E在直線AD的右側,連接CE.試判斷直線CE與直線AB的位置關系,并說明理由.
(3)當點P在線段AD上運動時,求AE的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4cm,點M為邊BC的中點,點N為邊AB上的任意一點(不與點A,B重合).若點B關于直線MN的對稱點B'恰好落在等邊△ABC的邊上,則BN的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P的坐標為(,),點Q的坐標為(,),且,,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關矩形”.下圖為點P,Q 的“相關矩形”的示意圖.
(1)已知點A的坐標為(1,0).
①若點B的坐標為(3,1)求點A,B的“相關矩形”的面積;
②點C在直線x=3上,若點A,C的“相關矩形”為正方形,求直線AC的表達式;
(2)⊙O的半徑為,點M的坐標為(m,3).若在⊙O上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點D為AB邊上一點(不與點B重合),連接CD,將線段CD繞點D逆時針旋轉90°,點C的對應點為E,連接BE.若AB=2,則△BDE面積的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com