【題目】(2014貴州黔東南)黔東南州某超市計劃購進(jìn)一批甲、乙兩種玩具,已知5件甲種玩具的進(jìn)價與3件乙種玩具的進(jìn)價的和為231元,2件甲種玩具的進(jìn)價與3件乙種玩具的進(jìn)價的和為141元.

(1)求每件甲種、乙種玩具的進(jìn)價分別是多少元;

(2)如果購進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進(jìn)甲種玩具超過20件,超出部分可以享受7折優(yōu)惠.若購進(jìn)x(x0)件甲種玩具需要花費(fèi)y元,請你求出yx的函數(shù)關(guān)系式;

(3)(2)的條件下,超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進(jìn)哪種玩具省錢.

【答案】(1)設(shè)每件甲種玩具的進(jìn)價為a元,每件乙種玩具的進(jìn)價為b元,由題意,得

解之得

答:每件甲種玩具的進(jìn)價為30元,每件乙種玩具的進(jìn)價為27元.

(2)當(dāng)0x≤20時,y30x

當(dāng)x20時,y20×30(x20)×30×0.721x180

綜合上述,yx的函數(shù)關(guān)系式為

(3)由題意得y27x

數(shù)量超過20件,

∴y21x180

當(dāng)yy時,21x18027x,

解之得x30

所以,購買數(shù)量在2030件范圍內(nèi),購進(jìn)乙種玩具更省錢.

當(dāng)yy時,21x18027x,

解之得x30

所以,購買數(shù)量為30件時,購進(jìn)甲種、乙種玩具花錢一樣多.

當(dāng)yy時,21x18027x,

解之得x30

所以,購買數(shù)量超過30件時,購進(jìn)甲種玩具更省錢.

【解析】(1) 30元 乙27(2) (3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,最省事的辦法是( )

A. 帶①去B. 帶②去C. 帶③去D. 帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·漳州)(滿分8分)漳州市某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識測試,為了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:

1)請將以上兩幅統(tǒng)計圖補(bǔ)充完整;

2)若一般優(yōu)秀均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有_ ▲ 人達(dá)標(biāo);

3)若該校學(xué)生有1200人,請你估計此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中(∠C=90°),放置邊長分別為34,x的三個正方形,則x的值為( )

A. 5 B. 6 C. 7 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=(1≤x≤8)的圖象記為曲線C1C1沿y軸翻折,得到曲線C2,直線y=-x+b C1 ,C2一共只有兩個公共點(diǎn),則b的取值范圍是______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人參加某項體育訓(xùn)練,近期五次測試成績得分情況如圖所示:

1)分別求出兩人得分的平均數(shù);

2)誰的方差較大?

3)根據(jù)圖表和(1)的計算,請你對甲、乙兩人的訓(xùn)練成績作出評價.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠ADC的平分線交直線BC于點(diǎn)E,交直線AB于點(diǎn)F

1)如圖①,證明:BEBF

2)如圖②,若∠ADC90°,OAC的中點(diǎn),GEF的中點(diǎn),試探究OGAC的位置關(guān)系,并說明理由.

3)如圖③,若∠ADC60°,過點(diǎn)EDC的平行線,并在其上取一點(diǎn)K(與點(diǎn)F位于直線BC的同側(cè)),使EKBF,連接CKHCK的中點(diǎn),試探究線段OHHA之間的數(shù)量關(guān)系,并對結(jié)論給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,E、F、G、H 分別為各邊的中點(diǎn),順次連 結(jié) E、F、G、H,把四邊形 EFGH 稱為中點(diǎn)四邊形.連結(jié) AC、BD,容易證明:中點(diǎn) 四邊形 EFGH 一定是平行四邊形.

(1)如果改變原四邊形 ABCD 的形狀,那么中點(diǎn)四邊形的形狀也隨之改變,通過探索 可以發(fā)現(xiàn):當(dāng)四邊形 AB CD 的對角線滿足 ACBD 時,四邊形 EFGH 為菱形;當(dāng)四邊形ABCD 的對角線滿足 時,四邊形 EFGH 為矩形;當(dāng)四邊形 ABCD 的對角線滿足 時,四邊形 EFGH 為正方形.

(2)試證明:SAEHSCFG S ABCD

(3)利用(2)的結(jié)論計算:如果四邊形 ABCD 的面積為 2012, 那么中點(diǎn)四邊形 EFGH 的面積是 (直接將結(jié)果填在 橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAC,BEAC于點(diǎn)E,CFAB于點(diǎn)F,BE,CF交于點(diǎn)D,則下列結(jié)論中不正確的是(  )

A. ABE≌△ACF B. 點(diǎn)DBAC的平分線上

C. BDF≌△CDE D. DBE的中點(diǎn)

查看答案和解析>>

同步練習(xí)冊答案