【題目】計算題
(1)
(2)
(3)
(4)
(5)
(6)
【答案】(1)3;(2)-1;(3);(4)-30;(5)-26.5;(6)-10.36.
【解析】
(1)根據(jù)有理數(shù)的加法運算法則計算即可得出答案;
(2)根據(jù)有理數(shù)的加減法運算法則計算即可得出答案;
(3)根據(jù)有理數(shù)的加減法運算法則計算即可得出答案;
(4)先去絕對值,再根據(jù)有理數(shù)的加減法運算法則計算即可得出答案;
(5)先將小數(shù)化成分數(shù),再根據(jù)有理數(shù)的加減法運算法則計算即可得出答案;
(6)根據(jù)有理數(shù)的加減法運算法則計算即可得出答案.
解:(1)原式=-8+10+2-1=3
(2)原式=
=-1
(3)原式=
=
=
(4)原式=
=-30
(5)原式=
=-26.5
(6)原式=
=-10.36
科目:初中數(shù)學 來源: 題型:
【題目】如圖,射線OM上有三點A、B、C,OC=45cm, BC=15cm, AB=30cm,已知動點P、Q同時運動,其中動點P從點O出發(fā)沿OM方向以速度2cm/s勻速運動,動點Q從點C出發(fā)沿CA方向勻速運動,當點Q運動到點A時,點Q停止運動(點P繼續(xù)運動).設運動時間為t秒.
(1)求點P運動到點B所用的時間;
(2)若點Q運動速度為每秒1cm,經(jīng)過多少秒時,點P和點Q的距離為30cm;
(3)當PA=2PB時,點Q恰好在線段AB的三等分點的位置,求點Q的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.
(1)求b的值;
(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2.
①當x2﹣x1=3時,結合函數(shù)圖象,求出m的值;
②把直線PB下方的函數(shù)圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).
左右折疊紙面,折痕所在的直線與數(shù)軸的交點為“對折中心點”
操作一:
(1)左右折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與 表示的點重合;
操作二:
(2)左右折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
①對折中心點所表示的數(shù)為 ,對折后5表示的點與數(shù) 表示的點重合;
②若數(shù)軸上A.B兩點之間距離為11(A在B的左側),且A.B兩點經(jīng)折疊后重合,求A.B兩點表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的角平分線,、分別是邊、的中點,連接、,在不再連接其他線段的前提下,要使四邊形成為菱形,還需添加一個條件,這個條件不可能是( )
A. BD=DC B. AB=AC
C. AD=BC D. AD⊥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,且ABCD于點E。連接AC、OC、BC。
(1)求證: ACO=BCD。
(2)若EB=,CD=,求⊙O的直徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜加工公司先后兩批收購蒜苔(tái)共100噸,第一批蒜苔價格為1萬元/噸;因蒜苔大量上市,第二批價格跌至0.4萬元/噸,這兩批蒜苔共用去52萬元.
(1)求兩批各購進蒜苔多少噸?
(2)公司收購后對蒜苔進行加工,分為粗加工和精加工兩種.粗加工每噸利潤400元,精加工每噸利潤1600元要求精加工數(shù)量不大于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是
A.a(chǎn)>0
B.當-1<x<3時,y>0
C.c<0
D.當x≥1時,y隨x的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com