【題目】如圖,△ABC中,∠B=90°,AB=12,BC=16,點P從點A開始沿邊AB向點B以1cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向點C以2cm/s的速度移動.如果P、Q分別從A、B同時出發(fā),當(dāng)點Q運動到點C時,兩點停止運動,問:
(1)經(jīng)過幾秒后,△PBQ的面積等于20cm2?
(2)△PBQ的面積會等于△ABC的面積的一半嗎?若會,請求出此時的運動時間;若不會,請說明理由.
【答案】(1)故經(jīng)過2秒后,△PBQ的面積等于20 cm2;(2)不會,見解析
【解析】
(1)設(shè)經(jīng)過t秒△PBQ的面積等于20cm2,根據(jù)三角形的面積公式建立方程求出其解即可;
(2)根據(jù)三角形之間的面積關(guān)系建立方程求出其解即可.
解:(1)依題意得
AP=t,BP=12-t,BQ=2t
∴
解得:t1=2,t2=10
∵BQ=2t≤BC=16
∴t≤8
∴t2=10舍去
故經(jīng)過2秒后,△PBQ的面積等于20cm2;
(2)不會
理由:若△PBQ的面積會等于△ABC的面積的一半,有
∴,
∵△=122-4×48<0,方程無實根,
因此△PBQ的面積不會等于△ABC的面積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育文化公司為某學(xué)校捐贈甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號,乙品牌有D、E兩種型號,現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號進(jìn)行捐贈.
(1)下列事件是不可能事件的是 .
A.選購乙品牌的D型號 B.既選購甲品牌也選購乙品牌
C.選購甲品牌的A型號和乙品牌的D型號 D.只選購甲品牌的A型號
(2)寫出所有的選購方案(用列表法或樹狀圖);
(3)如果在上述選購方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請用樹狀圖或列表法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點E是AB的中點,點P是對角線AC上一動點,設(shè)PC的長度為x,PE與PB的長度和為y,圖②是y關(guān)于x的函數(shù)圖象,則圖象上最低點H的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過點和點.
(1)求拋物線的解析式及頂點的坐標(biāo);
(2)點是拋物線上、之間的一點,過點作軸于點,軸,交拋物線于點,過點作軸于點,當(dāng)矩形的周長最大時,求點的橫坐標(biāo);
(3)如圖2,連接、,點在線段上(不與、重合),作,交線段于點,是否存在這樣點,使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為的拋物線與軸交于,兩點,且.
(1)求點的坐標(biāo);
(2)求二次函數(shù)的解析式;
(3)作直線,問拋物線上是否存在點,使得.若存在,求出點的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點,I是△ABC的內(nèi)心,AI的延長線交⊙O于點D,過點D作BC的平行線交AB、AC的延長線于E、F.下列說法:①△DBC是等腰直角三角形;②EF與⊙O相切;③EF=2BC;④點B、I、C在以點D 為圓心的同一個圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,點和點是對角線上的兩點,且過點作交的延長線于點.
(1)求證:四邊形是平行四邊形.
(2)若,,BC=4,則的面積是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com