【題目】如圖,點P關(guān)于OA、OB的對稱點分別為H、G,直線HG交OA、OB于點C、D,若∠HOG=80°,則∠CPD=___________.
【答案】100°
【解析】
要求∠CPD的度數(shù),要在△CPD中進行,根據(jù)軸對稱的性質(zhì)和等腰三角形的性質(zhì)找出與∠CPD的關(guān)系,利用已知可得∠AOB=40°可求出∠CPD.
解:連接OP
∵P關(guān)于OA、OB的對稱點是H、G,
∴OA垂直平分PH于R,OB垂直平分PG于T,
∴CP=CH,DG=DP,
∴∠PCD=2∠CHP,∠PDC=2∠DGP,
∵∠PRC=∠PTD=90°,
∴在四邊形OTPR中,
∴∠RPT+∠AOB=180°,
∵∠POC=∠COH,∠POD=∠DOG,∠HOG=80°,
∴∠AOB=40°
∴∠RPT=180°-40°=140°
∴∠CHP+∠PGD=40°,
∴∠PCD+∠PDC=80°
∴∠CPD=180°-80°=100°.
故答案為100°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蓄水池的排水管每小時排水8立方米,6小時可將滿池水全部排空.
(1)蓄水池的容積是多少?
(2)如果每小時排水量用Q表示,求排水時間t與Q的函數(shù)關(guān)系式.
(3)如果5小時內(nèi)把滿池水排完,那么每小時排水量至少是多少?
(4)已知排水管最大排水量是每小時12立方米,那么最少要多少小時才能將滿池水全部排空?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖北省荊門市)如圖,已知點A(1,2)是反比例函數(shù)圖象上的一點,連接AO并延長交雙曲線的另一分支于點B,點P是x軸上一動點;若△PAB是等腰三角形,則點P的坐標是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝祖國70周年華誕,陽光超市銷售甲、乙兩種慶祝商品,該超市若同時購進甲、乙兩種商品各10件共花費400元;若購進甲種商品30件,購進乙種商品15件,將用去750元;
(1)求甲、乙兩種商品每件的進價;
(2)由于甲、乙兩種商品受到市民歡迎,十一月份超市決定購進甲、乙兩種商品共80件,且保持(1)的進價不變,已知甲種商品每件的售價為15元,乙種商品每件的售價40元,要使十一月份購進的甲、乙兩種商品共80件全部銷售完的總利潤不少于600元,那么該超市最多購進甲種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2臺.
(1)求甲、乙兩種品牌空調(diào)的進貨價;
(2)該商場擬用不超過16000元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計圖.
類型 | 頻數(shù) | 頻率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)學(xué)生共________人, ________, ________;
(2)補全條形統(tǒng)計圖;
(3)若該校共有2000人,騎共享單車的有________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com