【題目】如果a>b,則-ac2________-bc2(c≠0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)E為AD中點(diǎn),點(diǎn)F為BC邊上任一點(diǎn),過點(diǎn)F分別作EB,EC的垂線,垂足分別為點(diǎn)G,H,則FG+FH為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在四邊形ABCD中,已知∠ABC∠ADC180°,ABAD,ABAD,點(diǎn)E在CD的延長線上,∠1∠2.
(1)求證:∠3∠E;
(2)求證:CA平分∠BCD;
(3)如圖(2),設(shè)AF是△ABC的邊BC上的高,求證:CE2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有質(zhì)地均勻的A、B、C、D四張卡片,上面對應(yīng)的圖形分別是圓、正方形、正三角形、平行四邊形,將這四張卡片放入不透明的盒子中搖勻,從中隨機(jī)抽出一張(不放回),再隨機(jī)抽出第二張.
(1)如果要求抽出的兩張卡片上的圖形,既有圓又有三角形,請你用列表或畫樹狀圖的方法,求出出現(xiàn)這種情況的概率;
(2)因?yàn)樗膹埧ㄆ嫌袃蓮埳系膱D形,既是中心對稱圖形,又是軸對稱圖形,所以小明和小東約定做一個(gè)游戲,規(guī)則是:如果抽出的兩個(gè)圖形,既是中心對稱圖形又是軸對稱圖形,則小明贏;否則,小東贏.問這個(gè)游戲公平嗎?為什么?如果不公平,請你設(shè)計(jì)一個(gè)公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有顏色不同的黑、白兩種顏色的球共5只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近 ;(精確到0.1)
(2)試估算口袋中白種顏色的球有多少只?
(3)請畫樹狀圖或列表計(jì)算:從中先摸出一球,不放回,再摸出一球;這兩只球顏色不同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)四邊形的兩條對角線互相垂直且相等,則稱這個(gè)四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于兩條對角線乘積的一半.根據(jù)以上信息回答:
(1)矩形__________“奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,作OM⊥BC于M.請猜測OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,∠A=50°,P是△ABC內(nèi)一點(diǎn),且∠ACP=∠PBC,則∠BPC的度數(shù)為( )
A. 130° B. 115° C. 110° D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P是射線AC上任意一點(diǎn) (不與A、D、C三點(diǎn)重合),過點(diǎn)P作PQ⊥AB,垂足為Q,交線段BD于E.
(1)如圖①,當(dāng)點(diǎn)P在線段AC上時(shí),說明∠PDE=∠PED.
(2)畫出∠CPQ的角平分線交線段AB于點(diǎn)F,則PF與BD有怎樣的位置關(guān)系?畫出圖形并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com