【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),P在Q的左側(cè),且滿足OP=OQ,OP⊥OQ,則點(diǎn)P的坐標(biāo)是_____.
【答案】.
【解析】
證明△PMO≌△ONQ(AAS),則PM=ON,OM=QN,設(shè)點(diǎn)P(m,﹣m+2),則點(diǎn)Q(﹣m+2,﹣m),即可求解.
解:分別過點(diǎn)P、Q作x軸的垂線交于點(diǎn)M、N,
∵OP⊥OQ,
∴∠POM+∠QON=90°,而∠QON+∠OQN=90°,
∴∠OQN=∠MOP,OP=OQ,∠PMO=∠ONQ=90°,
∴△PMO≌△ONQ(AAS),
∴PM=ON,OM=QN,
設(shè)點(diǎn)P(m,﹣m+2),則點(diǎn)Q(﹣m+2,﹣m),
將點(diǎn)Q的坐標(biāo)代入y=﹣得:﹣m=﹣(﹣m+2)+2,
解得:m=﹣,
故點(diǎn)P(﹣,),
故答案為:(﹣,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,連接AC,以點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,交AB、AC于點(diǎn)M,N,分別以M,N為圓心,大于MN長的一半為半徑畫弧,兩弧交于點(diǎn)H,連結(jié)AH并延長交BC于點(diǎn)E,再分別以A、E為圓心,以大于AE長的一半為半徑畫弧,兩弧交于點(diǎn)P,Q,作直線PQ,分別交CD,AC,AB于點(diǎn)F,G,L,交CB的延長線于點(diǎn)K,連接GE,下列結(jié)論:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD、EF相交于點(diǎn)O.
(1)寫出∠COE的鄰補(bǔ)角;
(2)分別寫出∠COE和∠BOE的對頂角;
(3)如果∠BOD=60°,,求∠DOF和∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載著這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長分別為5里;12里;13里,問這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )
A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程組解應(yīng)用題:在首屆“一帶一路”國際合作高峰論壇舉辦之后,某公司準(zhǔn)備生產(chǎn)甲、乙兩種商品銷往“一帶一路”沿線國家和地區(qū),原計(jì)劃生產(chǎn)甲商品和乙商品共210噸,采用新技術(shù)后,實(shí)際產(chǎn)量為230噸,其中甲商品超產(chǎn)5%,乙商品超產(chǎn)15%,求該公司實(shí)際生產(chǎn)甲、乙兩種商品各多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達(dá)B地,停留1小時后,速度不變,按原路返回.設(shè)兩車行駛的時間是x小時,離開A地的距離是y千米,如圖是y與x的函數(shù)圖象.
(1)甲車的速度是 ,乙車的速度是 ;
(2)甲車在返程途中,兩車相距20千米時,求乙車行駛的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,,直線過點(diǎn).
(1)當(dāng)時,如圖①,分別過點(diǎn)、作于點(diǎn),于點(diǎn).求證:.
(2)當(dāng),時,如圖②,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接、,動點(diǎn)從點(diǎn)出發(fā),以每秒1個單位長度的速度沿邊向終點(diǎn)運(yùn)動,同時動點(diǎn)從點(diǎn)出發(fā),以每秒3個單位的速度沿向終點(diǎn)運(yùn)動,點(diǎn)、到達(dá)相應(yīng)的終點(diǎn)時停止運(yùn)動,過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè)運(yùn)動時間為秒.
①用含的代數(shù)式表示.
②直接寫出當(dāng)與全等時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com